Towards Ubiquitous Edge Intelligence: Efficient ML
Algorithm and Hardware Co-Design

Presenter: Haoran You Advisor: Yingyan Lin

Georgia Institute of Technology

E @ Georgia School of
m Tech| Computer Science

- : i College of Computing
Efficient and Intelligent Computing Lab ollege of Computing

Research Project Summary

Energy Pyramid of DNNs

Research Project Summary

Energy Pyramid of DNNs

Algorithm

Quantization

Efficient Training & Inference

NAS shiftAddNet

Research Project Summary

Energy Pyramid of DNNs

Algorithm-Hardware Co-Design

Algorithm Hardware

Quantization Scheduling

Memory
Hierarchy

Dataflow & Mapping

Efficient Training & Inference | &3 & |Micro-architecture

NAS shiftAddNet

Table of Content

= Algorithm-Hardware Co-Design

Denser Sparser

Shift «<— Conv —» Add

AN | /U

Qutput

ShiftAddNAS [ICML'22]

ViTCoD [HPCA'23] & NASA [ICCAD’22]

EyeCoD [ISCA’22]

ViTCoD: Vision Transformer Acceleration via
Dedicated Algorithm and Accelerator Co-Design

Haoran You!, Zhanyi Sun4, Huihong Shi', Zhongzhi Yu?,
Yang Zhao?, Yongan Zhang', Chaojian Li', Baopu Li3, and Yingyan Lin'

'Georgia Institute of Technology
’Rice University
30racle Health and Al

The 29th IEEE International Symposium on
High-Performance Computer Architecture (HPCA 2023)

=1C

Efficient and Intelligent Computing Lah

Background of Vision Transformer (ViTs)

Patches
s H
|
@ x L

= ViTs achieve SOTA performance on various vision tasks
3)
“ & p‘ Multi-Head
s ‘!'ﬂ’«lﬂj. | (Layeriom)

* |nput: 2D image = input tokens/patches [Embedded Input]
[LayerNorm]
= Self—Attention],
Input Tokens l

» Core Model: Self-Attention and MLP P

Class
Dog /Bird / Car/ ...

ViT Models

Background of Vision Transformer (ViTs)

" ViTs achieve SOTA performance on various vision tasks

f - mmmmsmsmmsmsmmm—m— |
Y4
s | I
Embedded Input A Linear Projection I
Patches e I I
// : | T |
s (| 1
/T 1 N\ o | L MatMul.)
, I I
[LayerNorm] - = T | ;
,l, A7 ' | SoftMax] |
- < I I
Multi-Head ; |
Self-Attention . s =qK' |
\ I Head 1
P . XL _+ Head 2 I
\ I .* Head3 I
N\ -
Y N Al MatMul.] !
[LayerNorm] AN '
\ : I
l \ I I
N | |
\\ I I
[wmp . | E E !
| |
—® N Laf K vl o
. " I [Linear Projection] :
Class N : |
Dog / Bird / Car/ ... N |

Embedded Input Patches

- EEE S S S S e S e e e e e e e e e ol

Background of Vision Transformer (ViTs)

" ViTs achieve SOTA performance on various vision tasks
Embedded Input]

= |nput: 2D image =2 input tokens

.,.mﬂ
"H&N

| J._

A HN&NJ. L

Input Tokens

= Core Model: Self-Attention and MLP

= But ViTs still require a high computational cost
as compared to convolutional networks (CNNs)

|

Patches

-

Y

N

[LayerNorm

|

!

Multi-Head]

Self-Attention|

—P

[LayerNorm]

o

Class

og / Bird / Car/ ..

)

ViT Models

xL

What are the Bottlenecks in ViTs?

" The bottleneck is the self-attention module
= We profile seven ViT models to show the breakdown

= |n terms of FLOPs, self-attention is not as dominant as MLPs

FLOPs Breakdown

60 .
© 8. Da- N E’l**-l“-l“-
0 e .:~ -':~ ;':n -: -E -'E
Strided Deit-Tiny Deit-Small Deit-Base LeViT-128 LeViT-192 LeViT-256
Trans.
= MLP Conv/ m SA-MatMul SA- m SA- SA-

Embedding &Transpose Linear Softmax Others
&Reshape&Split (qkv, proj)

What are the Bottlenecks in ViTs?

" The bottleneck is the self-attention module
= We profile seven ViT models to show the breakdown

= |n terms of FLOPs, self-attention is not as dominant as MLPs

= |n terms of real Latency, it consistently accounts for over 50% latency

EdgeGPU Profile Breakdown

60
40
20

o

) = ©
(@] ~ o

0 -
o

— o o

— L

-]
—
o
=+
—

Strided Deit-Tiny Deit-Small Deit-Base LeViT-128 LeViT-192 LeViT-256

23

[=1]

o
-

Trans.
mMLP =Conv/ m SA-MatMul SA- u SA- SA-
Embedding &Transpose Linear Softmax Others
&Reshape&Split (qkv, proj)

EdgeGPU: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

What are the Bottlenecks in ViTs?

" The bottleneck is the self-attention module
= We profile seven ViT models to show the breakdown

= |n terms of FLOPs, self-attention is not as dominant as MLPs

= |n terms of real Latency, it consistently accounts for over 50% latency

i 0,
EdgeGPU Profile Breakdown As high as 69%!
PSSR \\/
60 _ ,
v ? ? ry

23

-
4

20

=2} L

B

Itﬂ

o
-

|
|
i
|
i
|
|
|
|
|
T k. b I
|
|
\
\

Strided Deit-Tiny Deit-Small Deit-Base

Trans. TEmmEmEmees
= MLP = Conv/ m SA-MatMul SA- m SA- SA-
Embedding &Transpose Linear Softmax Others
&Reshape&Split (qkv, proj)

EdgeGPU: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

What are the Bottlenecks in ViTs?

" The bottleneck is the self-attention module
= We profile seven ViT models to show the breakdown

= |n terms of FLOPs, self-attention is not as dominant as MLPs

= |n terms of real Latency, it consistently accounts for over 50% latency

MatMul occupy up to 53%! _ .
~— EdgeGPU Profile Breakdown A4S high as 63%!

60

40 .

w [=1]
- =

i |
| |
| |
| |
| |
| |
| |
? | - I :
J*’*I . .f .
0 | |
| |
\ \\

i
Strided | Deit-Tiny ;Deit-Small Deit-Base

o
-
o
[
-

|
LeViT-128 ’LeViT-1 92 LeViT-256

23

-
4
=

[

Trans. ~—======= ———
= MLP = Conv/ m SA-MatMul SA- m SA- SA-
Embedding &Transpose Linear Softmax Others
&Reshape&Split (qkv, proj)

EdgeGPU: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

Can Previous Attention Accelerators Help?

" The bottleneck is the self-attention module
= We profile seven ViT models to show the breakdown

= |n terms of FLOPs, self-attention is not as dominant as MLPs

= |n terms of real Latency, it consistently accounts for over 50% latency

= Can we use previous sparse attention accelerator to handle it?

= No, they are dedicated to NLP Transformers

X X X X
X X X X Z>
X X X
X X X
Dynamic Sparsity Patterns Reconfigurable Architecture
for Different Inputs E.g., Sanger [1], DOTA [2], etc

[1] Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture, MICRO 2021
[2] DOTA: detect and omit weak attentions for scalable transformer acceleration, ASPLOS 2022

Attention in ViTs and NLP Transformers

= Comparison of self-attentions in ViTs and NLP Transformers

Difference 1:

Fixed number of input tokens vs. dynamic number of input tokens

’
J
II

e Y

!;M = EENNENEE

Input Tokens for ViTs

0.04

Density

0.075 A

0.050 ~

Density

0.025 ~

0.000 T T I T T T
0 20 40 60

0.00

0

I 1 L
20 40 60
QQP Sequence Length

0 20 40
S5T2 Sequence Length STSB Sequence Length

Input Tokens for NLP Transformer [1]

[1] Learned Token Pruning for Transformers, KDD 2022

Attention in ViTs and NLP Transformers

= Comparison of self-attentions in ViTs and NLP Transformers

= Difference 2:
Up to 90% sparsity in ViTs’ attention maps vs. 50% ~ 60% in NLP
Transformer’s attention maps

=#~- NLP Trans. (BigBird) =@- NLP Trans. (Routing)
== NLP Trans. (5f. k-means) =#- NLP Trans. (Longformer)
NLP Trans. (Reformer) —4— DeiT-Base (InfoPruning)
NLP Trans. (Sf. quant) =4 DeiT-Small (InfoPruning)
38
== 82
36
== 80
34 ﬁ
- 78 2
- 76 =
1T Q
- 30 \\\h 0
Q. \ 74 <
NLP Transformer ® Vision Transformer {72 ‘gé‘
26 (Dynamic) (Fixed) 70
24
= 68
22

10 30 50 70 90 100
Sparsity Ratio of Attention Maps (%)

Challenges and Unexplored Opportunities for ViTs?

»= Challenge 1: Accelerate ViTs w/o on-the-fly reconfiguration?
= Opportunity 1: Fixed attention sparse patterns in ViTs

» (V] Fixed sparse patterns and thus stationary data accesses

= |V] Strong “tokens”

/ \ Denser, | Sparser

0 23 4 6 7

0

Sparsify /' g Reorder
4
|

> >
NS

Dense attention map Fixed sparse pattern Reorder “strong” tokens

Challenges and Unexplored Opportunities for ViTs?

»= Challenge 1: Accelerate ViTs w/o on-the-fly reconfiguration?
" Opportunity 1: Fixed attention sparse patterns in ViTs

» (V] Fixed sparse patterns and thus stationary data accesses

= |V] Strong “tokens”

! 5.5;»5;.E i F J 5‘:1;?-.5 i
“ N M N\ s f
M OSNNN | | N . |
N X !I i %&“*. f 4 k%"‘\q ' ‘ I | \ r
B 0 I I 1 I N l I |
G D R JE 150 D S [T
Y AT DT A 0 i PR TR

Fixed sparse pattern Reorder “strong” tokens

Challenges and Unexplored Opportunities for ViTs?

= Challenge 2: How to balance computations vs. data movements?

= Sparse attention makes data movements a bigger problem

Performance
(GOPS)

9556 loccc oo oo }fl TCoD Comp. Roof

100 -

el
. s o o o o = e e o o o =
[{#]

| | }
1.0 10 Comp. Intensity
Computation to Communication Ratio (Ops/Byte)

{‘ Dense ViTs Sparse ViTs

Challenges and Unexplored Opportunities for ViTs?

= Challenge 2: How to balance computations vs. data movements?
= Opportunity 2: Redundancy across attention heads

Challenges and Unexplored Opportunities for ViTs?

= Challenge 2: How to balance computations vs. data movements?
= Opportunity 2: Redundancy across attention heads

Performance
(GOPS)
A
956 |- oo e e &;TC&D Comp. Roof
100 -

>
0 0.1 0.6 1?{:- 3.2 1I|:| Comp. Intensity

Computation to Communication Ratio (Ops/Byte)

{‘ Dense ViTs Sparse ViTs O ViTCoD (Denser/Sparser + Auto-encoder)

Proposed ViTCoD: Algorithm & Accel. Co-Design

" Proposed ViT algorithm & accelerator co-design (ViTCoD) for

accelerating ViTs with sparse attention
= Split and conquer algorithm to cluster the workloads into denser/sparser

= Auto-encoder module to compress attention heads before transmitting

ViTCoD Algorithm ViTCoD Accelerator
Split and Conquer | T = |
Eye segmentation using RITNet /

1
MAC Line |—
: J

/

On-Chip Memory

Encoder

and

Sparser Engine :
Auto-encoder 4 L
Gaze estimation using FBNet \/

Save both computation &
data movements Dedicated acceleration

Decoder

Our Overall Contributions in ViTCoD

In this work, we

= Propose the first Vision Transformer algorithm & accelerator co-design
framework, dubbed ViTCoD

= On the algorithm level, ViTCoD

" prunes and polarizes the attention maps to have either denser or sparser
fixed patterns for regularizing two levels of workloads

" integrate a lightweight and learnable auto-encoder module to enable
trading dominant high-cost data movements for lower-cost computations

= On the hardware level, ViTCoD

= adopts a dedicated accelerator to simultaneously handle the enforced
denser and sparser workloads

" integrates on-chip encoder and decoder engines to reduce data movements

ViTCoD Overview

/ Self-Attention (Head 1)\\\

% EEE A
!_--: ---------- N
I i
ol K [s |,
| 1
I’__T __________ k
I 1
I 1
I 1

1

IItQ ~ K !

_____________ -’
A EEER A

Embedded Input

\L Patches J ////

ViT Self-attention

ViTCoD Algorithm:

The core idea on the algorithm level is to reduce both computations and
data movements in core self-attention modules.

ViTCoD Overview

a N\ o T e p— T "
Self-Attention (Head 1) \1/ . Denser -

‘:‘ EEE & 7 \ : :

— = = | ; $ -
r \l 1 I
— I 1 0

e X K |= s |,] Sparser, |
I | - I

S Sty T [l - DenseAuenton | Sparse || _ Sparse & Regular,

Split and Conquer = Save Computations

[Embedded Input}

\\T‘: Patches ////

ViT Self-attention

ViTCoD Algorithm:

The core idea on the algorithm level is to reduce both computations and
data movements in core self-attention modules.

Embedded Input
Patches

|

X

N
M

/ Self-Attention (Head 1N

A EmE *
e e ... \/
1 i

I
la x| K |5 s |
i]
P SR
I ~
I I
I I
! :
| A ~
v Q K ’
_____________ N
A AT

|

\
A

ViT Self-attention

ViTCoD Algorithm:

The core idea on the algorithm level is to reduce both computations and

\/

N

Z

ViTCoD Overview

st
L4

Sparser

'\ Dense Attention

-""M

Sparse

Sparse & Regula

/
-

_________ Compressed Reconstructed
QorK

| Encoder
| (e.g.,4x2)

Reconstruction Loss

Decoder
(e.g.,4x2)

Reconstructed
QorK

Y

Auto-encoder Module = Save Data Movements

data movements in core self-attention modules.

ViTCoD Overview

Split and Conquer
-—> Save Computations

— o ————

Auto-encoder Module Co-Design

—> Save Data Movements

.__________-
R NN

ViTCoD Accelerator:

The core idea on the accelerator level is to develop a dedicated accelerator
for supporting algorithms - accelerated computations and data movements

ViTCoD Overview

[’ ------------------------------ \\ _______________
I ' :_ Denser Engine :
|
: : | / : MAC Line 1 —
: Split and Conquer | - L
c QO] : N
! = Save Computations | -3 e MAC Line 2 > %
I I O i ! O a.,
Q - Ly
|\ :I a —:—h[MAC Line 3 T g
T N o W e v’ - |
| MAC Line 4 - 2
_______________________________ R — a
4 A ! Sparser Engine : g
I I ' [- ! 1
> MAC Line 1 -
: : I : \ o
' Auto-encoder Module ' Co-Design S > MAC Line 2 cERRN
I \ 0o r o
| -> Save Data Movements | 9 |' ¢ - | o b
: : 8 :rL MAC Line 3 : uc.l
| ' [.]
, w LT e
ViTCoD Accelerator:

The core idea on the accelerator level is to develop a dedicated accelerator
for supporting algorithms - accelerated computations and data movements

ViTCoD Algorithm: Split and Conquer

" Challenge 1: How to aggressively reduce the computation?
= Design insights:
* Pruning with fixed masks
= Attention map reordering

= ViTCoD leverages the following observation:

= The attention maps can be pruned up to 90% sparsity with fixed masks

= There are “strong” tokens in the attention

/ \ Denser, | Sparser

0 234 6 7

0

Sparsify /' g Reorder
4
|

> >
NS

Dense attention map Fixed sparse pattern Reorder “strong” tokens

& —_— T e—

I
|
|
I
(c) Prune and Reorder

Split and Conquer

(b) Reorder

\
|
|
(a) Prune

1
4
|

ViTCoD Algorithm

= Visualizing the pruned or reordered attention maps on DeiT-B

HIRTHL

ViTCoD Algorithm: Auto-Encoder

= Challenge 2: How to aggressively reduce the data movements?
= Design insights:
" Trade costly data movements with computations

= ViTCoD leverages the following observation:

= There is redundancy among attention heads

= Compress the Q/K data before transmitting from off-chip to on-chip

4% @
QorkK \‘ ‘ e o | O&I Ql or K'
) Encoder Decoder >
6'4\\' (e.g., 6 X 3) (e.g., 3x6) 5,
@‘9& .96
® _ %
Reconstruction Loss

|Q — Q'llpand ||K — K'||,

ViTCoD Algorithm: Auto-Encoder

» Visualizing the training trajectory of DeiT-T/S/B with our
proposed auto-encoder (AE) modules

80 A
70 1
60
50 A1
40 A
30 A1
20 -

Accuracy

(- == DeiT-Small

— == DeiT-Tiny
—— DeiT-Small (AE)

—— DeiT-Tiny (AE)

DeiT-Base

DeiT-Base (AE)

25

50 75 100
Epochs

Test loss

— DeiT-Small (AE)

—— DeiT-Tiny (AE)

DeiT-Base (AE)

50 75 100

Reconstruction Loss

10° -
: —— DeiT-Small (AE)
1001 DeiT-Base (AE)
—— DeiT-Tiny (AE)
103-;
102-;
101-;
0 25 50 75 100

Epochs

ViTCoD Algorithm: Training Pipeline

. rall training pipeline [
Overall training pipe Input: - [Pretrained ViTs]

—

=" |nput:
= Pretrained ViT models

Insert AE Modules

= Step 1: Insert AE modules
* Finetuning for 100 epochs

Step 1:

[Finetuning]

= Step 2: Split and conquer

= Prune and reorder

Split and Conquer

* Finetuning for 100 epochs

Step 2:

[Finetuning]

ViTCoD Accelerator: Opportunities

= Challenge: How to fully exploit the potential of ViTCoD algorithm?

= Opportunities:

* Fixed and structurally sparse Attention

f\\ .' — NN\ \ I Ny !‘\\ a\\;\”’-‘. T Sparser
N \ NN\

ViTCoD Accelerator: Opportunities

= Challenge: How to fully exploit the potential of ViTCoD algorithm?

= Opportunities:

* Fixed and structurally sparse Attention

= Compact Q and K representation

%@ Qeéﬁ

ViTCoD Accelerator: Design Explorations

= Challenge: How to fully exploit the potential of ViTCoD algorithm?

= Design explorations:
= Micro-architecture: single one or multiple sub-accelerator?

= Latter with merely two diverse workloads: denser or sparser

ViTCoD Accelerator: Design Explorations

= Challenge: How to fully exploit the potential of ViTCoD algorithm?

= Design explorations:

= Dataflows: S-stationary or K-stationary?

Q K Attn. Map S
X X X
X X
X

ok WN =
>
>

| <

X X

oOonph W=

- - % s |
o o R R o o
. - 0 0 0 0

r o]

¥ * * * * *
* el . . - -
- 5% 5% 2* P 2*

Ok, WN=

23456

Temporal

oOoONnbhWwWhN =
b
>
b

O WN=
>
>

oOonphwWwN=

S-stationary

ViTCoD Accelerator: Design Explorations

= Challenge: How to fully exploit the potential of ViTCoD algorithm?

= Design explorations:
= Dataflows: S-stationary or K-stationary?

= The latter is better suited for resulting sparse attention patterns

Q K Attn. Map S Q K Attn. Map S
1 1F 1[Ix] [x] [x 1] 15577 11 x] IxT Tx
2 [2[" 2[x X = | 2 2 2X X
3= x3'*- -3 X | 3 x3 1 X
= 4 4= = a[x] Ix S| s e ~ 4 x _[x
‘o' 5% 5| S| |X] |X n| 5 5 9 X X
al e[6[- 6[x | 6[E 6 6/x
£ 123456 — 123456
& 1 1 1 IxT IxT Ix] S 15 1 1 : x_[x] [x
2 2 2|x X 8_ 2 2| 2(x| X
3 3 -3 X el 3 3 - 3 |x
4 | X 4 - 41x] |x 2| 4 X 4 T 4|x X
5 5 5| x| |Xx S S S| X _|X
v 6 6 6x v 6 6 6[x
1723456 123456

S-stationary K-stationary

ViTCoD Accelerator: Micro-Architecture

= Our micro-architecture design features
= Two-pronged architecture
= Encoder and decoder engines

=== [nput/Interm. Act. ====\Weight/Interm. Act. ====Qut. Act

Weight
> &

=l PE Array

(MAC Lines)

<«
N MR

WBuf.

K/S Buf.| | SoftMax Unit

|QN Buf.| | En/Decoder

y

Sparser Engine| | |Denser Engine

I

1
Act ' L]
GB'L:I' . Query-based Q Fcarward./

] 1

. L 4

R |'D“n""f Buf. PE Array

¥ K/s Buf | | (MAC Lines)

]

. WBuf. | | SoftMax Unit
Act. ‘J IdxBuf. | [SpMM Controller|
GB1 —J l—<_ OBuf. En/Decoder

ViTCoD Accelerator: Micro-Architecture

= Our micro-architecture design features
= Two-pronged architecture
= Encoder and decoder engines

v
|'D“n""f Buf. PE Array

K/s Buf. [MAC LiI'IES]

\ 4

*
[]
== = === = -
-

=== Input/Interm. Act. ====Weight/Interm. Act. ===Out.Act . = —> —T T L§
o =
Weight = = ‘—'! =2 ©
—t & [waur. || MACLIRes) | —> = ¥ l : v S| ¢
L - — s S MAC 0 MAC1 Mac7| @
LT % K/S Buf.| | SoftMax Unit || = nan i 0|1
- — . S 3
e 3 |QN Buf.|| En/Decoder \ 3 _/!
! T \
! ¥
Act. / | Query-based Q Forward. / \ Encoder MAC Lines
GBO |-, : I
o

WBuf. SoftMax Unit

-

IdxBuf. | [SpMM Controller,

Sparser Engine

Act.
N 931 <« |

Ti

OBuf. En/Decoder

ViTCoD Accelerator: Micro-Architecture

= Our micro-architecture design features
= Two-pronged architecture
= Encoder and decoder engines

* Tiling and spatial or temporal mappings
m Q * KT

Temporal 9
——> 197 Tokens

64 Feature
Dim
1
—0 |

64 Feature T
Dim. K

197 Tokens

Q S

ViTCoD Accelerator: Micro-Architecture

= Our micro-architecture design features
= Two-pronged architecture
= Encoder and decoder engines

* Tiling and spatial or temporal mappings
m Q * KT
= SV

Temporal Spatial
poral @)

. S—

Spatial

o Temporal

197 Tokens

b

64 Feature
Dim.
S \'} V'

197 Tokens
197 Tokens

197 Tokens

ViTCoD Accelerator: Micro-Architecture

= Our micro-architecture design features
= Two-pronged architecture
= Encoder and decoder engines
= |nter- or Intra-MAC accumulation

I i | 1 <=
—p 2 g'_)?‘ e e =M &
- ¥ VvV Vv VvV sif¢
Q > > > 102 3
N 3 | ;
o S| h
. . (98]
E MC1 o [macT o |1
3)
a
_ #&=—— Encoder MAC Lines —/“* -
P - ~ - .
K/S Buffer
¥ I_"'\] |) ¥ \l "-\\}
o :@r‘, »P—>|) —>®-|—>TG—:J - EE‘ Qo
E -~ » I | E o E‘
':En LDHELJ:’D_MAC_ Const. O I"D MAC EE ':Eu
3 JEE— 2
@ Intra-PE/MAC Acc. @ =

ViTCoD Accelerator: Micro-Architecture

= Our micro-architecture design features
= Two-pronged architecture
= Encoder and decoder engines
" |nter- or Intra-MAC accumulation
= Reconfigurability

ViTCoD Accelerator

(C) PyTurch»C Parser)»CCompileD»

Attention: SDDMM; SpMM; Hardware

Linear MLP FC; Partition; Parameters
Global Tokens: (__Controller)
QKN; S; H; F

(Runtime)
--'""_'""-l-...___._-_-_.__'_.

Evaluation Setup and Baselines

= Evaluation Setup

= Seven ViT Models:
= DeiT-Base/Small/Tiny, LeViT-128/192/256 for image classification
= Strided Transformer for human pose estimation

= Datasets:
= ImageNet and Human3.6M

= Metrics:
= Accuracy, Latency speedups

= Benchmark Baselines

= Commercial devices
= CPU, GPU, EdgeGPU

= Customized accelerators

= SpAtten, Sanger

Evaluation Setup and Baselines

= Benchmark Baselines:

= Commercial devices
= CPU, GPU, EdgeGPU

*%@

H‘»

.v = \ e Edge TPU\" EFFICIEDIGENT COMPUTING b \
e , ’ \\E (ZedBoard) _Edge FF

Edge GPU (TX2)

Evaluation Setup and Baselines

= Evaluation Setup

" Layout floorplan

Index Memory

MAC Lines

Denser/
Sparser Engines

Weight Memory

Output Memory

Encoder/
Decoder Engines

Q/K/S/V or
Input Memory

Evaluation: ViTCoD over SOTA Accelerators

CPU EdgeGPU GPU SpAtten M Sanger ViTCoD

1000
=
o 100
S .
10 n o |
B - ! | | . :
Q 1 == S ~N 3 o 0 ﬁ ﬁ :‘:'t" < ™ N
Q. L sas"™ LEN d2x 88 L s8s "
(¥ - = - S - - - - = -
0.1
DeiT-Base DeiT-Small Deit-Tiny LeViT-256 LeViT-192 LeViT-128 Strided
Core attention speedups (90% sparsity) Trans.

= ViTCoD over CPU/GPU platforms

= ViTCoD achieves up to 235.3x, 160.6x, and 86x speedups over CPU,
EdgeGPU and GPU

= ViTCoD over SOTA attention accelerators
= ViTCoD achieves 10.1x and 6.8x speedups over SpAtten and Sanger

Evaluation of ViTCoD Algorithm

DeiT on ImageNet LeViT on ImageNet
fe— * a?g;fﬂﬁfuela;tiggy —s |=—r *?2.0% Latency—:li
S [o5990% 8% i ’ x| L o——®
i o® . ¢
. ¢ W
g 70 r—k"’ké‘___‘__‘ g 75
o iy
g— -~ DeiT-Base —@— DeiT-Base (ViTCoD) g' —fe— LeViT-256 —@— LeViT-256(ViTCoD)
= 60 1{* DeiT-Small =@ DeiT-Small (ViTCoD) = 70 1|-A— LeViT-192 —@— LeViT-192(ViTCoD)
—§— DeiT-Tiny —— DeiT-Tiny (ViTCoD) ~§— LeViT-128 —h— LeViT-128 (ViTCoD)
02 04 06 0.8 1.0 02 04 06 08 1.0
Norm. Latency Norm. Latency

= Evaluate ViTCoD’s split and conquer algorithm

= ViTCoD reduce 45.1% ~ 85.8% and 72.0% ~ 84.3% latency of attention
layers for DeiT and LeViT, respectively, while leading to a comparable
model accuracy (i.e., < 1% accuracy drop)

Evaluation of ViTCoD Algorithm

Accuracy Test loss Reconstruction Loss
g0 —====s======== 2> —— LeViT-256 (AE) ~ —— LeViT-256 (AE)
r R LeViT-192 (AE) || 10% 1 LeViT-192 (AE)
20 2.0 - —— LeViT-128 (AE)] —— LeViT-128 (AE)
- == LeViT-256 ~
LeViT-192 1 107
60 1 ~—- LeViT-128 1.5 i
—— LeViT-256 (AE) ~
50 1 LeViT-192 (AE) 10- 102 -
—— LeViT-128 (AE) ' L
40 4= '
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Epochs Epochs Epochs

= Evaluate ViTCoD’s auto-encoder module

= ViTCoD compress 50% Q/K vectors, e.g., 12 heads = 6 heads, with <
0.5% accuracy drops

Evaluation of ViTCoD Accelerators

B Data Movements O Computation O Preprocess

0.1

o B lim

CPU EdgeGPU GPU SpAtten Sanger ViTCoD ViTCoD
w/(1) w/(1&2)

Latency

Normalized

= Averaged across 60% ~ 90% sparsity
= ViTCoD achieves 6.8x and 4.3x speedups over SpAtten and Sanger

= ViTCoD achieves 9.8x energy efficiency over the most competitive
baseline Sanger

Summary

In this work, we

" Propose the first Vision Transformer algorithm &
accelerator co-design framework, dubbed ViTCoD

= On the algorithm level, ViTCoD integrates a split and
conquer training and an auto-encoder module without
compromising the accuracy

* On the hardware level, GCoD further develop a dedicated
two-pronged accelerator with encoder/decoder modules

(] <

Acknowledge: NSF EPCN & RTML programs -

EyeCoD: Eye Tracking System Acceleration via
FlatCam-based Algorithm & Accelerator Co-Design

Haoran You*', Cheng Wan*', Yang Zhao*1, Zhongzhi Yu*', Yonggan Fu', Jiayi Yuan',
Shang Wu', Shunyao Zhang', Yongan Zhang!, Chaojian Li', Vivek Boominathan',
Ashok Veeraraghavan!, Ziyun Li%, and Yingyan Lin'

'Rice University
’Meta Reality Labs

The 49th International Symposium on
Computer Architecture (ISCA 2022)

Efficient and Intelligent Computing Lah M et q

Background: Tremendously Growing AR/VR Market

GLOBAL AUGMENTED REALITY AND VIRTUAL REALITY

The global augmented reality and virtual reality market is expected to reach

USD 767.67 billion by 2025.

= Augmented and virtual reality (VR/AR) market is blooming
= $766 billion by 2025
= Compound annual growth rate (CAGR) of 73.7% [1]

[1] Market Research Future (MRFR), 2021

Background: Eye Tracking in AR/VR

= Eye tracking is an essential human-machine interface in AR/VR

Eye Tracking Cam.

Background: Eye Tracking in AR/VR

= Eye tracking is an essential human-machine interface in AR/VR

= AR/VR devices with eye tracking modalities
L PIayStatlonVRZ

o
\L s B

Eye Tracking Cam.

Background: Eye Tracking in AR/VR

= Eye tracking is an essential human-machine interface in AR/VR

= AR/VR devices with eye tracking modalities

<~ PlayStationVR2 O VIVEPRO:e

i8:

= Foveated rendering application [2]
gl Emy g Eay

Full res Full res

Eye Tracking Cam.
L » W w

> res Y“ures [eres | Vieres

., .

[2] The Evolution of High Performance Foveated Rendering, Qualcomm 2021

Motivation: Eye Tracking in AR/VR

= Eye tracking is an essential human-machine interface in AR/VR

= Challenges for eye tracking in AR/VR [3]
= >240 FPS
= Small form factor
= Power consumption in mW
\ = Visual privacy

/ \JRI P‘R SCfEET\

2 .8
L
& & Al

Eye Tracking Cam.

Requirements [1]:
1. > 240 FPS

2. Small Form Factor
| 3. Low Power

A

Motivation: Eye Tracking in AR/VR

= Eye tracking is an essential human-machine interface in AR/VR

= Challenges for eye tracking in AR/VR [3]
= >240 FPS
= Small form factor
= Power consumption in mW
\ = Visual privacy

= Existing works [4,5]
= An order of magnitude slower (i.e., 30 FPS)
= Large form factor and low visual privacy due to
the adopted lens-based cameras

i - Fail to meet real-time application requirements
Eye Tracking Cam. PP d

Requirements [1]: . ’
1. > 240 FPS [3] C. Liu, et. al., IDEM’21

2. Small Form Factor [4] Y. Feng, et. al., IEEE VR’22
3. Low Power [5] K Bong, et. al., VLSI'15

A

Limitations of Existing Solutions

= Why existing eye tracking can not satisfy the requirements?

= Rely on lens-based cameras = Limitations
= Large form factor
= High communication cost between camera and backend processor

= |ow visual privacy

Unexplored Opportunities for Eye Tracking?

" Opportunity 1: Can we build a lensless eye tracking system?
= A lensless camera, i.e., FlatCam [6]

= |v) Small form factor, i.e., 5-10x thinner

= (V] Visual privacy

Mask Sensor
Lens-based Camera J

Lens Sensor

. -t
10 - 20mm E

[6] M. Asif, et. al., TCI'17

Unexplored Opportunities for Eye Tracking?

" Opportunity 1: Can we build a lensless eye tracking system?
= A lensless camera, i.e., FlatCam [6]

= |vJ Small form factor, i.e., 5-10x thinner

= (V] Visual privacy

" Opportunity 2: Leverage end-to-end co-design?
= An Al acceleration chip featuring algorithm and accelerator co-design
= (V] >240 FPS

= V) mW power consumption

Mask Sensor
Lens-based Camera |

Lens Sensor

— - € AlAccel.
10 - 20mm Chip

[6] M. Asif, et. al., TCI'17

Proposed EyeCoD: Algorithm & Accel. Co-Design

" Proposed FlatCam-based algorithm & accelerator co-design
(EyeCoD) for accelerating eye tracking in AR/VR devices

" |ncorporating three features:
= Sensing-processing interface
= Predict-then-focus algorithm pipeline
= Dedicated accelerator attached to FlatCam

EyeCoD Algorithm EyeCoD Accelerator
ROI Prediction Mask Sensor
Eye segmentation using RITNet " B
Gaze Estimation
Gaze estimation using FBNet
e D Al Accel.

Predict-then-focus Pipeline Chip

Proposed EyeCoD: Algorithm & Accel. Co-Design

" Proposed FlatCam-based algorithm & accelerator co-design
(EyeCoD) for accelerating eye tracking in AR/VR devices

EyeCoD Algorithm EyeCoD Accelerator
ROI Prediction Mask Sensor
Eye segmentation using RITNet B '

<€ Al Accel.

Gaze Estimation
Gaze estimation using FBNet
<2mm

Predict-then-focus Pipeline Chip

" Challenges to achieve EyeCoD: small form factor vs. large DNNs

" On the algorithm level, how to track FlatCam captured eye images
efficiently without compromising task accuracy?

" On the hardware level, how to leverage and support EyeCoD algorithm
for further boosting the acceleration efficiency?

Our Overall Contributions in EyeCoD

In this work, we

" Propose the first lensless FlatCam-based eye tracking algorithm &
accelerator co-design framework, dubbed EyeCoD

" On the system level, EyeCoD advocates lensless FlatCams instead of
lens-based cameras to facilitate small form factor in mobile VR devices

= On the algorithm level, EyeCoD integrates a predict-then-focus pipeline
to first predict ROIs and then estimate gazes merely based on ROls,
without compromising task accuracy

®= On the hardware level, EyeCoD further develops a dedicated
accelerator attached to FlatCams for accelerating EyeCoD algorithm

EyeCoD Overview: Eye Tracking System

Eye Tracking
Camera

]

Lenses Hot Mirrors)
Diagram

FlatCam

‘ . .

Sensor
Measurement

Eye Mask Computatlonal
Reconstructed

Eye Image

Sensor

EyeCoD Overall System:

The core idea on the system level is to replace lens-based cameras with
lensless FlatCams = thinner + reduced distance btw cameras and processors

Proposed EyeCoD System for Eye Tracking: Overview

Eye Tracking
Camera

Lenses Hot Mirrors

[
!
!
!
!
!
!
|

i . —>
= Sensor
: Measurement
\ abinary coded mask Computational
S o e - Reconstructed
Eye Image

EyeCoD Overall System:

The core idea on the system level is to replace lens-based cameras with
lensless FlatCams = thinner + reduced distance btw cameras and processors

Proposed EyeCoD System for Eye Tracking: Overview

Eye Tracking

Camera . T 2 2
arg min [SLX0F ~ ylI3 + e[l X]|}

Least-square objective:
= X: Reconstructed image
y: sensor measurement

[TR P MU ——

Lenses Hot Mirrors

Sensor
Measurement

a binary coded mask

[
!
!
!
!
!
!
|

Computational |
Reconstructed !
Eye Image :

\

EyeCoD System:

The core idea on the system level is to replace lens-based cameras with
lensless FlatCams = thinner + reduced distance btw cameras and processors

Proposed EyeCoD System for Eye Tracking: Overview

B T T e e e e e T T R P T E e E E E E E EmEm e e e ..., ..., . —-—-—-—-—————————

Gaze Estimation (Focus) Eye Segmentation (Predict)

LI |

U |

U |

U |

LI |

LI |
»

Augment|, | RITNet

<— DNN Model « <

Eve Areaj; . = Model
Gaze — _ .

: Direction Gaze Gaze ! REQIOI‘I of Semant|c.:

' Normal Estimation | Interest Segmentation

__

EyeCoD Algorithm:

The core idea on the algorithm level is to first predict the ROIs before
estimating the gaze direction - reduced the required computational cost

Proposed EyeCoD System for Eye Tracking: Overview

g8 Co-Design
Al Accel.
Chip

<2mm

EyeCoD Accelerator:

The core idea on the accelerator level is to develop a dedicated accelerator
attached to FlatCams = accelerated computations and data movements

EyeCoD Algorithm: Predict-then-focus Pipeline

" Challenge: How to aggressively reduce the model complexity?
= Design insight:
= Perform gaze estimation after extracting ROIs

= EyeCoD leverages the following fact:

= The movement of eyes is much slower than that of gaze direction [7]
—=> ROI prediction is only needed once for every 50 frames
- Gaze estimation need to be computed every frame

[7] C. Palmero, et. al., Sensor’21

EyeCoD Algorithm: Predict-then-focus Pipeline

= The proposed predict-then-focus pipeline

= Stage 1: Image reconstruction after FlatCam

= Sensing-processing interface: replaces both camera sensors and the first

layer of the eye tracking model - FlatCam’s coded masks
s

Image Reconstruction Reconstructed)

e o e -
. Y/

_ Measurement

EyeCoD Algorithm: Predict-then-focus Pipeline

= The proposed predict-then-focus pipeline

a Image Reconstruction Reconstructed)

m Stage 2: ROI prediCtion Stage 1: b, x! .x Pp EE
. /
/ROI Prediction * \

" Predict and crop the LD
(i.e., pupil, iris, and sclera) Segmentation

. . o Measurement
most informative area of eyes
Detect _
® Once per 50 frames Crop Range usmg+RITNet
Stage 2: <
! l '/
e 1 = ~

-

EyeCoD Algorithm: Predict-then-focus Pipeline

= The proposed predict-then-focus pipeline

“ Image Reconstruction Reconstructed
Stage 1: P I ! (I)R
ensor
. Measurement . i)

/ROI Prediction -
Segmentation

Detect
Crop Range usmg RITNet
Stage 2: (—|_
= Stage 3: Gaze estimation l l

= Estimate the gaze direction

-
based on extracted ROls Esﬁ;’:ﬁw ¥
" Perform fOI’ eaCh frame Stage 3: Gaze Estimation using FBNet —) :
\ Gaze Normal Gaze Estimation J Y

EyeCoD Accelerator

=" Challenge: How to fully exploit the potential of EyeCoD algorithm?

= Design challenges and considerations

= Qur proposed EyeCoD accelerator features:

= Partial time-multiplexing mode for workload orchestration
" Intra-channel reuse for depth-wise conv layers’ hardware utilization

» Dedicated support for activation partition and cross layer processing

EyeCoD Accelerator: Design Challenge 1

= Challenge: How to fully exploit the potential of EyeCoD algorithm?

= Design challenges and considerations

= Workload orchestration
= X Time-multiplexing mode
= X Concurrent mode

ROI ROI —03
Prediction E{» MAC MAC Prediction MAC MAC
Gaze 4 MAC MAC Gaze MAC | | MAC
Estimation d Estimation |
lllustrating Time-multiplexing Mode lllustrating Concurrent Mode
) High reuse opportunity) Amortizing ROI prediction workload

@ Peak resource usage for ROI prediction @ Low reuse opportunity

EyeCoD Accelerator: Design Challenge 1

= Challenge: How to fully exploit the potential of EyeCoD algorithm?

= Design challenges and considerations

= Workload orchestration
= X Time-multiplexing mode
= X Concurrent mode

ROI ROI 03
Prediction E{» MAC MAC Prediction MAC MAC
Gaze 4 MAC MAC Gaze MAC | | MAC
Estimation d Estimation |
lllustrating Time-multiplexing Mode lllustrating Concurrent Mode
) High reuse opportunity) Amortizing ROI prediction workload

@ Peak resources usage for ROI prediction @ Low reuse opportunity

» Can we marry the best of both modes?

EyeCoD Accelerator: Design Challenge 2

= Challenge: How to fully exploit the potential of EyeCoD algorithm?
= Design challenges and considerations
= Depthwise conv layers (DW): Reduced mode size yet low utilization

. 7.9% FLOPs of the whole workload
= X yet 34% overall processing time

ml [

Camal s AT

Input Act Output Act Input Act Output Act

i

Weighf Weight

Generic/Point-wise Conv Layer Depth-wise Conv Layer (DW)

EyeCoD Accelerator: Design Challenge 2

= Challenge: How to fully exploit the potential of EyeCoD algorithm?
= Design challenges and considerations
= Depthwise conv layers (DW): Reduced mode size yet low utilization

. 7.9% FLOPs of the whole workload
= X yet 34% overall processing time

ml [

Camal s AT

Input Act Output Act Input Act Output Act

i

Weighf Weight

Generic/Point-wise Conv Layer Depth-wise Conv Layer (DW)

» Can we improve the input activation reuses 2 high MAC utilization?

EyeCoD Accelerator: Design Challenge 3

" Challenge: How to fully exploit the potential of EyeCoD algorithm?

= Design challenges and considerations

= Dedicated support for activation partition and cross layer processing

)y

Intermediate Act

/}Q/

(&)
4%
N\

<«— Height ——

y
“«— Width —

Input Act

Output Act

EyeCoD Accelerator: Feature 1

= QOur proposed EyeCoD accelerator features:
= Partial time-multiplexing mode for workload orchestration
» Observation: Fluctuated utilization for gaze estimation

]

)
j
|
|
]
L
L

8 8
> ¢

1
—
-
—

MAC Utilization (%
=)
[
|
|
|
[|

60 i
50-
40_ | — | | | | | |
0 15000 30000 45000 60000 75000 90000
Time (us)

Visualizing the temporal MAC utilization of the gaze estimation

EyeCoD Accelerator: Feature 1

= QOur proposed EyeCoD accelerator features:
= Partial time-multiplexing mode for workload orchestration
= Observation: The utilization for gaze estimation fluctuate
" Proposed: Amortize ROI prediction workload to underutilized MACs

ROI ROI
Prediction [MAC | | MAC Prediction [0~ | MAC | | MAC
— NN/ 2 VAV,
Gaze Gaze O=OP| | MAC MAC
Estimation MAC MAC Estimation
Gaze estimation only Concurrent ROI prediction

and gaze estimation

_) Amortize ROI prediction workload

L Higher reuse opportunity

EyeCoD Accelerator: Feature 1

= QOur proposed EyeCoD accelerator features:

= Partial time-multiplexing mode for workload orchestration

= Observation: The utilization for gaze estimation fluctuate

" Proposed: Amortize ROI prediction workload to underutilized MACs

ROI ROI
Prediction [MAC | | MAC Prediction [0~ | MAC | | MAC
— NN/ 2 VAV,
Gaze Gaze O=OP| | MAC MAC
Estimation MAC MAC Estimation
Gaze estimation only Concurrent ROI prediction

and gaze estimation
) Amortize ROI prediction workload

— 2.31X speed up over the time-multiplexing mode
) Higher reuse opportunity

— 1.6X higher energy efficiency over the concurrent mode

EyeCoD Accelerator: Feature 2

= Qur proposed EyeCoD accelerator features:
.
= [ntra-channel reuse for boosting depth-wise conv layers’ ultilization
* Column-wise intra-channel reuse — 3 X utilizaiotn
=" Deeper row-wise intra-channel reuse — 2 X utilization

...........
EEEE """""""

..........

Column-wise

B [G]u[s]s] R Intra-channel Reuses
Weight Input Act Mapping on Output Act
MAC Lanes
B e e e e < [s[s[s]s] Deeper row-wise
| e 1 _]l—\ alalala _N:::.:‘" B e ; S Intra-channel Reuses
Weight Input Act Mapping on Output Act

MAC Lanes

EyeCoD Accelerator: Feature 3

= QOur proposed EyeCoD accelerator features:

= Dedicated support for activation partition and cross layer processing

= Support versatile operations:
= Partition operation

e,

_—

/|

Proposed Activation Memory
Storage Layout (i.e., Address) (An
Example for a 6x6x24 Act Tensor)

EyeCoD Accelerator: Feature 3

= QOur proposed EyeCoD accelerator features:

= Dedicated support for activation partition and cross layer processing
= Support versatile operations:

= Concatenation operation

_—

/|

s
7
4

Proposed Activation Memory
Storage Layout (i.e., Address) (An
Example for a 6x6x24 Act Tensor)

EyeCoD Accelerator: Feature 3

= QOur proposed EyeCoD accelerator features:

= Dedicated support for activation partition and cross layer processing
= Support versatile operations:

= Up/Down-sampling operation

]

/ .
/\ A /
R Rl = / /
g S * ..‘. "..' —1 /] /
& A
A Z /
—r 2 3 g™ o1 e
51’...7' frp 1 ({ ;-‘.?. Wit ~ /
o e ot - Proposed Activation Memory
L8 R L Storage Layout (i.e., Address) (An

Example for a 6x6x24 Act Tensor)

EyeCoD Accelerator: Feature 3

= QOur proposed EyeCoD accelerator features:

= Dedicated support for activation partition and cross layer processing

Sequential-
write

N

In Act GO In Act G1

Parallel-
read

A4
Proposed Sequential-write-parallel-read Activation
Buffer for 2 Higher Activation Bandwidth

EyeCoD Accelerator: Feature 3

= QOur proposed EyeCoD accelerator features:

= Dedicated support for activation partition and cross layer processing

ox ,L M*Input Act Rows
Tmp Buffer Sequential-
. v write
*2bl Switch
—)‘ g s g
Control * * N4
In Act GO In Act G1
2*M*Input---—- | 00T 1"_-_;_-_"1'_'::
ActRows W TTTTCTCW TN T TR y Parallel-

—— >_< read

MAC Lane Ol MAC Lane 1l === MAC Lane 127¢
V4

Proposed Sequential-write-parallel-read Activation
Buffer for 2 Higher Activation Bandwidth

Evaluation Setup and Baselines

= Evaluation Setup

= Considered Models:

= RITNet for eye segmentation
= FBNet-C100 for gaze estimation

= Eye Tracking Datasets:
= OpenEDS 2019 for eye segmentation
= OpenEDS 2020 for gaze estimation

= Evaluation Metrics:
= Gaze estimation accuracy

= Model FLOPs, and task throughput and energy efficiency

= Benchmark Baselines:
= EdgeCPU (Raspberry Pi) and CPU (AMD EPYC 7742)
= EdgeGPU (Nvidia Jetson TX2) and GPU (Nvidia 2080Ti)
= Prior eye tracking accelerator: CIS-GEP [8]

[8] K. Bong, et. al., JSSC'16

Evaluation Setup and Baselines

= Evaluation Setup

= Benchmark Baselines:
= EdgeCPU (Raspberry Pi) and CPU (AMD EPYC 7742)
= EdgeGPU (Nvidia Jetson TX2) and GPU (Nvidia 2080Ti)
= Eye tracking processor: CIS-GEP [8]

EFFICIENT AND INTELLIGENT COMPUTING

Edge FPGA
(Zed Board)

H _—
i Edge TPU ')
‘\\

h @:{ 777 g

Edge GPU (TX2)

Evaluation Setup and Baselines

= Evaluation Setup

= EyeCoD Al Chip and Configurations:
= Silicon prototype:

| o Technology 28nm
Chip Area 3.00 mm?Z
Eﬁi T H Supply 0.51-0.8 V (Core)
| ’L T S Voltage 0.59-0.88 V (Mem)
s ¢i1
T -“
jmLETer:y Core
Frequency 370 MHz @ (0.8V, 0.88V)
i Total SRAM 316KB
of MACs 512
154.32 mW
ol ks TR N Power

@ (0.8V. 0.88V), 370 MHz

= Accelerator configurations:

Act GBO/GB1 Weight Buffer0/1 Weight GB Index SRAM Instr. SRAM

512KB * 2 64KB * 2 512KB 20KB 4KB
MAC Lanes MACs/MAC Lane Area Clock frequency Power
128 8 8 mm? 370MHz 335mW

Evaluation: EyeCoD over SOTA Accelerators

1.2
1.0 el
= t -
= >0g =
Q O 8.81 X Q
ST,
W Q o]]
2 0.6 a
O g S
gqq: et —
o w 04 I'E
2
0.2
I
0.0 '

EdgeCPU CPU EdgeGPU GPU CIS-GEP EyeCoD

= EyeCoD over CPU/GPU platforms:

= EyeCoD achieves up to 2966x, 12.7x, 14.8x, and 2.61x throughput
improvements over EdgeCPU, CPU, EdgeGPU, and GPU

= EyeCoD over SOTA eye tracking accelerators:

= EyeCoD achieves on average 12.8x throughput improvement and 8.1x
higher energy efficiency over CIS-GEP, respectively.

Evaluation of EyeCoD Algorithm Pipeline

Model Resolution .E?’e segmentation mlOU FLOPs
Origin Image FlatCam Image

U-net 512X512 93.3 92.5 14.1G
RITNet 512X512 95.1 93.6 17.0G
RITNet 256X256 94.7 93.8 4.1G
RITNet (8-bit) 256X256 94.0 92.8 0.3G
RITNet 128%X128 94.1 93.5 1.0G
RITNet (8-bit) 128X128 93.3 92.7 0.1G

= ROI prediction based on eye segmentation model

= EyeCoD achieves up to 16x FLOPs reduction over the SOTA RITNet with
a comparable (¥93%) mIOU on FlatCam captured images

— Validate the effectiveness of EyeCoD’s ROl prediction

Evaluation of EyeCoD Algorithm Pipeline

Model Camera |Resolution|Error|Parameter FLOPs
ResNetl18 Lens 224x224 | 3.17 11.18M 182G
ResNet18 3.27 11.18M 0.56G
MobileNet 3.43 2.23M 0.10G

FBNet-C100 FlatCam | 96160 | ;o3| 5500 0.12G
FBNet-C100 (S-bit) 3.23 3.59M 0.01G

" @Gaze estimation on top of the predicted ROIs

= EyeCod with FBNet-C100 (8-bit) achieves 0.04 error reduction while
reducing 78.2% FLOPs, compared with the award winner using ResNet18

— Validate the effectiveness of EyeCoD algorithm pipeline

Evaluation of Our EyeCoD Accelerator

Throughput Norm.
System (EPS) Energy Eff.
Lens-based System™ 96.34 1.00
EyeCoD w/ P.F.* 191.94 1.99
EyeCoD w/ P.F. & Input. 233.64 2.43
EyeCoD w/ P.F. & Input. & Partial. 299.04 3.10
EyeCoD w/ P.F. & Input. & Partial. & Depth. 385.66 4.00

= *:Using time-multiplexing mode

= P.F.: EyeCoD w/ predict-then-focus pipeline

= Input. : Sequential-write-parallel-read input activation buffer design
= Partial. : Partial time-multiplexing workload orchestration

= Depth. : Intra-channel reuse for depth-wise layers

= Overall throughput or energy efficiency improvements:
= EyeCoD achieves 4x over lens-based eye tracking system

= Breakdown analysis:

" P.F. leads to 1.99x improvements, Input., Partial., and Depth. further
offers 1.22x, 1.28x, and 1.29x improvements, respectively.

Summary

EyeCoD integrates system-, algorithm-, and accelerator-level
innovations:

= The first FlatCam based algorithm & accelerator co-design
framework for eye tracking that can simultaneously

meet all three requirements for next-generation AR/VR devices

= On the algorithm level, EyeCoD integrates a predict-then-focus
pipeline to largely reduce the computational cost without
compromising the task accuracy;

= On the hardware level, EyeCoD further develops a dedicated
accelerator attached to FlatCams for acceleratmg both
computations and data movements.

Acknowledge: NSF RTML & EPCN programs

Demonstration

ShiftAddNAS: Hardware-Inspired Search
for More Accurate and Efficient Neural Networks

Haoran You, Baopu Li, Huihong Shi, Yonggan Fu, Yingyan Lin

ICML 2022

NASA: Neural Architecture Search and Acceleration
for Hardware Inspired Hybrid Networks

Huihong Shi, Haoran You, Yang Zhao, Zhongfeng Wang, Yingyan Lin

ICCAD 2022

ShiftAddNAS: Background and Motivation

= Two branches of SOTA DNN design: Trade off accuracy and efficiency
* Multiplication-based DNNs, e.g., CNNs, Transformers

() Achieve unprecedented task accuracy
@ Power hungry = Challenge their deployment to edge devices

ShiftAddNAS: Background and Motivation

= Two branches of SOTA DNN design: Trade off accuracy and efficiency
* Multiplication-based DNNs, e.g., CNNs, Transformers

Achieve unprecedented task accuracy
@ Power hungry = Challenge their deployment to edge devices

" Multiplication-free DNNs, e.g., ShiftNet, AdderNet, ShiftAddNet

(L) Efficient and favor their deployment to edge devices
@ Under-perform their multiplication-based counterparts in terms of task accuracy

ShiftAddNAS: Background and Motivation

= Motivation of ShiftAddNAS
= Enable automated search for hybrid network architecture to marry the best of both worlds
Multiplication-based operators (e.g., Conv & Attention) =
Multiplication-free operators (e.g., Shift & Add) 2>

&
&o

Yd
Yd

Our/goal

v

= Motivation of ShiftAddNAS

ShiftAddNAS: Tackled Challenges

= Enable automated search for hybrid network architecture to marry the best of both worlds

= Multiplication-based operators (e.g., Conv & Attention) 2
= Multiplication-free operators (e.g., Shift & Add) 2

= Associated Challenges

= How to construct an effective hybrid search space?

= More operators = larger SuperNets, but SOTA weight sharing strategy is not applicable

. £
Gaussian \

(a) Weights in Conv

i
n
i\

Laplacian | Discrete

(b) Weights in Add (c) Weights in Shift

ShiftAddNAS: Our Contributions

For the first time, we

= Develop ShiftAddNAS, featuring a hybrid search space that incorporates both
multiplication-based and multiplication-free operators

" Propose a new heterogeneous weight sharing strategy that enables automated search
for hybrid operators with heterogeneous weight distributions

= Conduct extensive experiments on both CV and NLP tasks to validate the effectiveness
of our proposed ShiftAddNAS framework

Contribution 1: Hybrid Search Space and SuperNet

= Search space for NLP tasks

= Seven different blocks
= Attn, Cony, Shift, and Add
= Attn+Conv, Attn+Add, and Attn+Shift

= Elastic dimensions for MLPs, embeddings, and heads

[Attn, Attn+Conv, Attn+Shift]
[Attn+Add, Cony, Shift, Add]

[Attn, Attn+Conv]
[Attn+Shift, Attn+Add]

Encoder block types

Decoder block types

Num. of decoder blocks [6,5, 4,3, 2,1]

Elastic embed. Dim. [1024, 768, 512]

Elastic head number [16, 8, 4]

Elastic MLP dim. [4096, 3072, 2048, 1024]
Arbitrary Attn [3, 2, 1]

The Search Space for NLP Tasks

Contribution 1: Hybrid Search Space and SuperNet

= Search space for NLP tasks

= Seven different blocks
= Attn, Cony, Shift, and Add
= Attn+Conv, Attn+Add, and Attn+Shift

= Elastic dimensions for MLPs, embeddings, and heads

! ! Input_|] Disabled for
[Block i-1] / .ltpgﬂte decoder |
wW ——_— s —— N, - 1
! |1 Conv/
Y : [Attn] [Attn%[Conq [Attn]+ Add] [Attn]+[$h|ft] ' Shift/Add |
Block i : \ |
| A : :
l vl 1 0 0 0 o0 ;
(Ty 1 Mask (0: deactivated; 1: activated) I
Block i+1| y :
. F I I
I [
! 1

The SuperNet for NLP Tasks

Contribution 1: Hybrid Search Space and SuperNet

= Search space for NLP tasks
= Search space for CV tasks

= Multi-resolution

= Various spatial resolutions or scales are essential for CV tasks

Block types [Attn, Conv, Shift, Add]
Num. of 562 x 128 blocks (1, 2, 3, 4]

Num. of 282 x 256 blocks (1, 2, 3, 4]

Num. of 142 x 512 blocks [3,4,5,6, 7]

Num. of 72 x 1024 blocks [4,5,6,7,8,9]

The Search Space for CV Tasks

Contribution 1: Hybrid Search Space and SuperNet

= Search space for NLP tasks
= Search space for CV tasks

Multi-resolution
Various spatial resolutions or scales are essential for CV tasks

1x1 Conv

Position
Encoding

The SuperNet for CV Tasks

Contribution 2: Heterogenous Weight Sharing Strategy

= One-shot NAS with heterogeneous weight sharing
= Weight sharing among Conv, Add, and Shift blocks

Fr=—=—=—======-= 1
Input

(_input] TO A :
_ / \ I 'Hl ‘ I
c 0 o 8 I
.g (. i L J) T T
— Shift (> Add !
Eg{__} ! Quant.r-f’!“f-.l']’"(-) : :
oo Weights #&—— Weights > Weights ;e Q0 !
= W | |mrsses=s=d] 0 |=m==m=ama-d l I
p \. ~. e J , :
Fp . | I
i] i 1
| i \\ |
Output | =N 1

(a) Heterogenous Weight Sharing Strategy (b) Transformation Kernel

N

1 .

Ls=Lce+LKL=—7% Z P(yi|zi) log(P(gs|xi))
T =1

+ D (FPeony(Ws) || N(0,1)) + Drr(Paaa(T(Ws)) || £p(0,),

NASA: Dedicated Accelerator for Hybrid Networks

" Micro-architecture
= Multi-chunk design with customized PEs = Support heterogeneous layers
= Four-level memory hierarchy = Enhance data locality

IT..J' NoC
-
23 v v 1 v v 1 v v 1
= = CLP SLP ALP
<< |—p || PE | {{{ PE|"""l{ PE || | || PE IlPE u PE I[PE ||iPE |[PE
] gl o || pe| lf PE |~ 1ll PE|| | I PE |[—PE ||| PE |iiPE |iiPE ++||| PE
'; |[pe | pe| "l pe]| | [PE IlPEIm”_ PE IrPE' PE m
Q. — — = — =
"5' A} i\‘w— — :“L_'_] —*'-_r
o 4 4) ¥ Add I
Input| MAC I Input Shift Input er
7 Unit Unit I
W —» I W W —
1 |—> psum I T |—>psum T I—» psum I
L e - = - e = — — — I

Micro-Architecture

NASA:PE Allocation Strategy

= Challenge 1
= How to partition and then allocate limited hardware resources to multiple chunks?

= Proposed PE allocation strategy

= Balance the throughput of multiple chunks = Minimize the overall latency

= Formally, allocated PEs in chunks are proportional to the corresponding operations under the
area budget

Ne¢ Ns Ny

OConv OShift OAdder

)

s.t.Ac + A + A, = Area Constraint.

NASA: Auto-Mapper

= Challenge 2

= Our bigger design space = Nontrivial to manually identify the optimal dataflow

" Proposed Auto-Mapper
"= Enable automated search for the optimal dataflow
" Nested for-loop description:
" Loop ordering factors: Determine the data reuse patterns
" Loop tiling factors: Determine how to store data within each memory hierarchy

- — — c
[re N for (m3=0; m3<M3; m3++) DRAM
[41-" 1 for (e3=0; e3<E3; e3++)
|- - - for (c3=0; c3<C3; c3++)
for (m2=0; m2<M2; m2++) GB
l¢ M N for (c2=0; c2<C2; c2++)
L x¢ | pfor (m1=0; m1<M1; m1++)
pfor (e1=0; e1<E1; e1++)
IR NoC pfor (c1=0; c1<C1; c1++)
<> pfor (r=0; r<R; r++)
Y\MA for (m0=0; m0<MO0; mO++)

" I for (f=0; f<F; f++)
F

RF for (c0=0; c0<CO; c0++)
for (s=0; s<S; s++)
basic computations

ShiftAddNAS: Experimental Setting

= NLP tasks = CVtasks

= Two datasets = One dataset: ImageNet
= WMT’14 English to French (En-Fr) = Five evaluation metrics
= WMT’14 English to German (En-De) = Accuracy

" Five evaluation metrics = Number of parameters/MACs
= BLEU score = Hardware energy and latency
= Number of parameters/FLOPs = Four categories of baselines
= Hardware energy and latency = Multiplication-free NNs

= Four baselines = AdderNet, DeepShift, BNN
= Transformer " CNNs
= Lightweight Conv " ResNet, SENet
= Lite Transformer = Transformer
= HAT = ViT, DeiT, VITAS, Autoformer

= CNN-Transformer
= BoT, HR-NAS, BossNAS

ShiftAddNAS: Experimental Results for NLP Tasks

42

WMT'14 En-Fr

41 1

]

..---"""'-—-

WMT'14 En-De

28 1
27 T

=,

—

g 07 o 1A
5 . f // |- I ‘f//
IH / == Transformer IH f / =fe= Transformer
= 38 == Evolved Transformer | = 35 == HAT i
H l / —§=— HAT E l * —#— Lightweight Conv
@ 37 I == ShiftAddNAS I @ 24 == ShiftAddNAS n
36 == | ite-Transformer {8-bit) || l == | ite Transformer (8-hit)
J —&— ShiftAddNAS (8-bit) 23 ‘ —&— ShiftAddNAS (8-bit)
= 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FLOPs lel0 FLOPs lelo
BLEU scores vs. FLOPs of ShiftAddNAS over SOTA baselines on NLP tasks.
ShiftAddNAS vs. SOTA baselines in terms of accuracy and efficiency on NLP tasks.
WMT’ 14 En-Fr WMT’ 14 En-De
Params FLOPs BLEU Latency Energy || Params FLOPs BLEU Latency Energy
Transformer 176M 10.6G 41.2 130ms 214ml] 176M 10.6G 284 130ms 214mlJ
Evolved Trans. 175M 10.8G 413 - - 4TM 2.9G 28.2 - -
HAT 48M 34G 414 49ms 81mJ 44M 2.7G 28.2 42ms 69mJ
ShiftAddNAS 46M 3.0G 41.8 43ms 71m,]J 43M 2.7G 28.2 40ms 66m.J
HAT 46M 2.9G 41.1 42ms 69mJ 36M 2.2G 27.6 34ms S56mJ
ShiftAddNAS 41M 2.7G 41.6 39ms 64m,] 33M 2.1G 27.8 J1lms 52m,J
HAT 30M 1.8G 39.1 29ms 48ml] 25M L5G 25.8 24ms 40m]J
ShiftAddNAS 29M 1.8G 40.2 16ms 45m,]J 25M 1.6G 26.7 24ms 40m.J
Lite Trans. (8-bit) 17TM 1G 39.6 19ms 31mlJ 17M 1G 26.5 19ms 31ml]
ShiftAddNAS (8-bit) 11M 0.2G 41.5 11ms 16m,] 17M 0.3G 28.3 16ms 24mJ
Lite Trans. (8-bit) 12M 0.7G 39.1 14ms 24mlJ 12M 0.7G 25.6 14ms 24mlJ
ShiftAddNAS (8-bit) 10M 0.2G 41.1 10ms 15m] 12M 0.2G 26.8 9.2ms 14m.]

Overall Improvement on NLP

= ShiftAddNAS achieves up to +2
BLEU scores improvement and
69.1% and 69.2% energy and
latency savings

ShiftAddNAS: Experimental Results for CV Tasks

Comparison with SOTA baselines on ImageNet classification task.

Model Top-1 Ace. Top-5 Acc. || Params Res. MACGs || #Mult. #Add #Shift Model Type
BNN 55.8% 78.4% 26M 224 3.9G 0.1G 3.9G 3.8G Mult.-free
AdderNet 74.9% 91.7% 26M 2242 3.9G 0.1G 71.60G 0 Mult.-free
AdderNet-PKKD 76.8% 093.3% 26M 2242 3.9G 0.1G 7.6G 0 Mult.-free
DeepShift-Q 70.7% 90.2% 26M 2242 3.9G 0.1G 3.9G 3.8G Mult.-free
DeepShift-PS 71.9% 00.2% 52M 2242 3.9G 0.1G 3.9G 3.80 Mult.-free
ResNet-50 76.1% 92.9% 26M 2242 3.9G 3.9G 3.9G 0 CNN
ResNet-101 77.4% 94.2% 45M 2242 7.6G 7.6G 7.6G 0 CNN
SENet-30 79.4% 04.6% 26M 2242 3.9G 3.9G 3.9G 0 CNN
SENet-101 81.4% 95.7% 45M 2242 7.6G 7.6G 7.6G 0 CNN
ViT-B/16 77.9% - 86M 3842 18G 18G 17G 0 Transformer
ViT-L/16 716.5% - 304M 3842 64G 64G 636 0 Transformer
DeiT-T 74.5% - 6M 2242 1.3G 1.3G 1.3G 0 Transformer
DeiT-S 81.2% - 22M 2242 4.6G 4.6G 4.6G 0 Transformer
VITAS 17.4% 03.8% 13M 2242 277G 2.7G 2.7G 0 Transformer
Autoformer-5 81.7% 05.7% 23M 2242 5.1G 5.16G 5.16G 0 Transformer
BoT-50 78.3% 094.2% 21M 224° 4.0G 4.0G 4.0G 0 CNN + Trans.
BoT-50 + SE 79.6% 94.6% 21M 2242 4.0G 4.0G 4.0G 0 CNN + Trans.
HR-NAS 17.3% - 6.4M 2242 0.4G 0.4G 0.4G 0 CNN + Trans.
BossNAS-TO 80.5% 95.0% 38M 2242 3.5G 3.5G 3.5G 0 CNN + Trans.
BossNAS-TO + SE 80.8% 95.2% 38M 2242 3.5G 3.5G 3.5G 0 CNN + Trans.
Shift AddNAS-T0 82.1% 95.8% JOM 224 3.7G 2.76G 3.8G 1.0G Hybrid
Shift AddNAS-TO+ 82.6% 96.2 % 30M 2562 4.9G 3.6 4.9G 1.4G Hybrid
T2T-ViT-19 81.9% - 30M 224° 8.9G 8.9G 8.9G 0 Transformer
TNT-S 81.3% 95.6% 24M 2242 52G 5.2G 53.2G 0 Transformer
Autoformer-B 82.4% 05.7% 54M 2242 11G 11G 11G 0 Transformer
BoTNet-S1-39 81.7% 095.8% 28M 224 7.3G 7.3G 71.3G 0 CNN + Trans.
BossNAS-T1 82.2% 95.8% 38M 2242 8.0G 8.0G 8.0G 0 CNN + Trans.
ShiftAddNAS-T1 82.7 % 96.1% 30M 224 6.4G 544G 6.4 1.0G Hybrid
Shift AddNAS-T11+ 83.0% 96.4 % 30M 2562 8.5G 7.1G 8.5G 1.4G Hybrid

= QOverall Improvement on CV

= ShiftAddNAS on average
offers a +0.8% ~ +7.7% higher
accuracy and 24% ~ 93%
energy savings

Summary
For the first time, we

= Develop ShiftAddNAS, featuring a hybrid search space that incorporates both
multiplication-based and multiplication-free operators

" Propose a new heterogeneous weight sharing strategy that enables automated
search for hybrid operators with heterogeneous weight distributions

" Conduct extensive experiments on both CV and NLP tasks to validate the
effectiveness of our proposed ShiftAddNAS framework

Open-source Code:
https://github.com/RICE-EIC/ShiftAddNAS

National Institute
of Mental Health

Q&A

Thank you for your listening!

	Towards Ubiquitous Edge Intelligence: Efficient ML Algorithm and Hardware Co-Design
	Research Project Summary
	Research Project Summary
	Research Project Summary
	Table of Content
	ViTCoD: Vision Transformer Acceleration via Dedicated Algorithm and Accelerator Co-Design
	Background of Vision Transformer (ViTs)
	Background of Vision Transformer (ViTs)
	Background of Vision Transformer (ViTs)
	What are the Bottlenecks in ViTs?
	What are the Bottlenecks in ViTs?
	What are the Bottlenecks in ViTs?
	What are the Bottlenecks in ViTs?
	Can Previous Attention Accelerators Help?
	Attention in ViTs and NLP Transformers
	Attention in ViTs and NLP Transformers
	Challenges and Unexplored Opportunities for ViTs?
	Challenges and Unexplored Opportunities for ViTs?
	Challenges and Unexplored Opportunities for ViTs?
	Challenges and Unexplored Opportunities for ViTs?
	Challenges and Unexplored Opportunities for ViTs?
	Proposed ViTCoD: Algorithm & Accel. Co-Design
	Our Overall Contributions in ViTCoD
	ViTCoD Overview
	ViTCoD Overview
	ViTCoD Overview
	ViTCoD Overview
	ViTCoD Overview
	ViTCoD Algorithm: Split and Conquer
	ViTCoD Algorithm: Split and Conquer
	ViTCoD Algorithm: Auto-Encoder
	ViTCoD Algorithm: Auto-Encoder
	ViTCoD Algorithm: Training Pipeline
	ViTCoD Accelerator: Opportunities
	ViTCoD Accelerator: Opportunities
	ViTCoD Accelerator: Design Explorations
	ViTCoD Accelerator: Design Explorations
	ViTCoD Accelerator: Design Explorations
	ViTCoD Accelerator: Micro-Architecture
	ViTCoD Accelerator: Micro-Architecture
	ViTCoD Accelerator: Micro-Architecture
	ViTCoD Accelerator: Micro-Architecture
	ViTCoD Accelerator: Micro-Architecture
	ViTCoD Accelerator: Micro-Architecture
	Evaluation Setup and Baselines
	Evaluation Setup and Baselines
	Evaluation Setup and Baselines
	Evaluation: ViTCoD over SOTA Accelerators
	Evaluation of ViTCoD Algorithm
	Evaluation of ViTCoD Algorithm
	Evaluation of ViTCoD Accelerators
	Summary
	EyeCoD: Eye Tracking System Acceleration via FlatCam-based Algorithm & Accelerator Co-Design
	Background: Tremendously Growing AR/VR Market
	Background: Eye Tracking in AR/VR
	Background: Eye Tracking in AR/VR
	Background: Eye Tracking in AR/VR
	Motivation: Eye Tracking in AR/VR
	Motivation: Eye Tracking in AR/VR
	Limitations of Existing Solutions
	Unexplored Opportunities for Eye Tracking?
	Unexplored Opportunities for Eye Tracking?
	Proposed EyeCoD: Algorithm & Accel. Co-Design
	Proposed EyeCoD: Algorithm & Accel. Co-Design
	Our Overall Contributions in EyeCoD
	EyeCoD Overview: Eye Tracking System
	Proposed EyeCoD System for Eye Tracking: Overview
	Proposed EyeCoD System for Eye Tracking: Overview
	Proposed EyeCoD System for Eye Tracking: Overview
	Proposed EyeCoD System for Eye Tracking: Overview
	EyeCoD Algorithm: Predict-then-focus Pipeline
	EyeCoD Algorithm: Predict-then-focus Pipeline
	EyeCoD Algorithm: Predict-then-focus Pipeline
	EyeCoD Algorithm: Predict-then-focus Pipeline
	EyeCoD Accelerator
	EyeCoD Accelerator: Design Challenge 1
	EyeCoD Accelerator: Design Challenge 1
	EyeCoD Accelerator: Design Challenge 2
	EyeCoD Accelerator: Design Challenge 2
	EyeCoD Accelerator: Design Challenge 3
	EyeCoD Accelerator: Feature 1
	EyeCoD Accelerator: Feature 1
	EyeCoD Accelerator: Feature 1
	EyeCoD Accelerator: Feature 2
	EyeCoD Accelerator: Feature 3
	EyeCoD Accelerator: Feature 3
	EyeCoD Accelerator: Feature 3
	EyeCoD Accelerator: Feature 3
	EyeCoD Accelerator: Feature 3
	Evaluation Setup and Baselines
	Evaluation Setup and Baselines
	Evaluation Setup and Baselines
	Evaluation: EyeCoD over SOTA Accelerators
	Evaluation of EyeCoD Algorithm Pipeline
	Evaluation of EyeCoD Algorithm Pipeline
	Evaluation of Our EyeCoD Accelerator
	Summary
	Demonstration
	ShiftAddNAS: Hardware-Inspired Search �for More Accurate and Efficient Neural Networks
	ShiftAddNAS: Background and Motivation
	ShiftAddNAS: Background and Motivation
	ShiftAddNAS: Background and Motivation
	ShiftAddNAS: Tackled Challenges
	ShiftAddNAS: Our Contributions
	Contribution 1: Hybrid Search Space and SuperNet
	Contribution 1: Hybrid Search Space and SuperNet
	Contribution 1: Hybrid Search Space and SuperNet
	Contribution 1: Hybrid Search Space and SuperNet
	Contribution 2: Heterogenous Weight Sharing Strategy
	NASA: Dedicated Accelerator for Hybrid Networks
	NASA:PE Allocation Strategy
	NASA: Auto-Mapper
	ShiftAddNAS: Experimental Setting
	ShiftAddNAS: Experimental Results for NLP Tasks
	ShiftAddNAS: Experimental Results for CV Tasks
	Summary
	Q & A

