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Background of Vision Transformer (ViTs)

 ViTs achieve SOTA performance on various vision tasks 
 Input: 2D image  input tokens/patches

 Core Model: Self-Attention and MLP

Input Tokens

ViT Models
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Background of Vision Transformer (ViTs)

 ViTs achieve SOTA performance on various vision tasks 
 Input: 2D image  input tokens

 Core Model: Self-Attention and MLP

 But ViTs still require a high computational cost
as compared to convolutional networks (CNNs)

Input Tokens

ViT Models



What are the Bottlenecks in ViTs?

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs
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What are the Bottlenecks in ViTs?

EdgeGPU: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/ 

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs
 In terms of real Latency, it consistently accounts for over 50% latency

As high as 69%!MatMul occupy up to 53%!



Can Previous Attention Accelerators Help?

[1] Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture, MICRO 2021
[2] DOTA: detect and omit weak attentions for scalable transformer acceleration, ASPLOS 2022

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs
 In terms of real Latency, it consistently accounts for over 50% latency

 Can we use previous sparse attention accelerator to handle it?
 No, they are dedicated to NLP Transformers

Reconfigurable Architecture
E.g., Sanger [1], DOTA [2], etc

Dynamic Sparsity Patterns
for Different Inputs



Attention in ViTs and NLP Transformers

 Comparison of self-attentions in ViTs and NLP Transformers
 Difference 1: 

Fixed number of input tokens vs. dynamic number of input tokens

Input Tokens for NLP Transformer [1]

[1] Learned Token Pruning for Transformers, KDD 2022

Input Tokens for ViTs



Attention in ViTs and NLP Transformers

 Comparison of self-attentions in ViTs and NLP Transformers
 Difference 2:

Up to 90% sparsity in ViTs’ attention maps vs. 50% ~ 60% in NLP 
Transformer’s attention maps



Challenges and Unexplored Opportunities for ViTs?

 Challenge 1: Accelerate ViTs w/o on-the-fly reconfiguration?
 Opportunity 1: Fixed attention sparse patterns in ViTs

 ✅ Fixed sparse patterns and thus stationary data accesses
 ✅ Strong “tokens”

Fixed sparse pattern Reorder “strong” tokensDense attention map
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 Sparse attention makes data movements a bigger problem
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Challenges and Unexplored Opportunities for ViTs?

 Challenge 1: Accelerate ViTs w/o on-the-fly reconfiguration?
 Opportunity 1: Fixed attention sparse patterns in ViTs

 Challenge 2: How to balance computations vs. data movements?
 Opportunity 2: Redundancy across attention heads



Proposed ViTCoD: Algorithm & Accel. Co-Design

 Proposed ViT algorithm & accelerator co-design (ViTCoD) for 
accelerating ViTs with sparse attention
 Split and conquer algorithm to cluster the workloads into denser/sparser
 Auto-encoder module to compress attention heads before transmitting

Algorithm & Accelerator
Co-Design

ViTCoD AcceleratorViTCoD Algorithm

Eye segmentation using RITNet
Split and Conquer

Gaze estimation using FBNet
Auto-encoder

Save both computation & 
data movements

and

Dedicated acceleration



Our Overall Contributions in ViTCoD

In this work, we
 Propose the first Vision Transformer algorithm & accelerator co-design 

framework, dubbed ViTCoD

 On the algorithm level, ViTCoD
 prunes and polarizes the attention maps to have either denser or sparser 

fixed patterns for regularizing two levels of workloads
 integrate a lightweight and learnable auto-encoder module to enable 

trading dominant high-cost data movements for lower-cost computations

 On the hardware level, ViTCoD 
 adopts a dedicated accelerator to simultaneously handle the enforced 

denser and sparser workloads 
 integrates on-chip encoder and decoder engines to reduce data movements



ViTCoD Overview

ViTCoD Algorithm: 

The core idea on the algorithm level is to reduce both computations and 
data movements in core self-attention modules.

ViT Self-attention
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ViTCoD Algorithm: 

The core idea on the algorithm level is to reduce both computations and 
data movements in core self-attention modules.

ViT Self-attention

Split and Conquer  Save Computations

Auto-encoder Module  Save Data Movements



ViTCoD Overview

ViTCoD Accelerator: 

The core idea on the accelerator level is to develop a dedicated accelerator  
for supporting algorithms  accelerated computations and data movements

Auto-encoder Module 
 Save Data Movements

Split and Conquer 
 Save Computations



ViTCoD Overview

ViTCoD Accelerator: 

The core idea on the accelerator level is to develop a dedicated accelerator  
for supporting algorithms  accelerated computations and data movements

Auto-encoder Module 
 Save Data Movements

Split and Conquer 
 Save Computations



ViTCoD Algorithm: Split and Conquer

 Challenge 1: How to aggressively reduce the computation?
 Design insights: 

 Pruning with fixed masks
 Attention map reordering

 ViTCoD leverages the following observation: 
 The attention maps can be pruned up to 90% sparsity with fixed masks

 There are “strong” tokens in the attention

Fixed sparse pattern Reorder “strong” tokensDense attention map



ViTCoD Algorithm: Split and Conquer

 Visualizing the pruned or reordered attention maps on DeiT-B



ViTCoD Algorithm: Auto-Encoder

 Challenge 2: How to aggressively reduce the data movements?
 Design insights: 

 Trade costly data movements with computations

 ViTCoD leverages the following observation: 
 There is redundancy among attention heads
 Compress the Q/K data before transmitting from off-chip to on-chip



ViTCoD Algorithm: Auto-Encoder

 Visualizing the training trajectory of DeiT-T/S/B with our 
proposed auto-encoder (AE) modules



ViTCoD Algorithm: Training Pipeline

 Overall training pipeline
 Input: 

 Pretrained ViT models

 Step 1: Insert AE modules
 Finetuning for 100 epochs

 Step 2: Split and conquer
 Prune and reorder
 Finetuning for 100 epochs



ViTCoD Accelerator: Opportunities

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Opportunities:

 Fixed and structurally sparse Attention



ViTCoD Accelerator: Opportunities

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Opportunities:

 Fixed and structurally sparse Attention

 Compact Q and K representation



ViTCoD Accelerator: Design Explorations

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Design explorations:

 Micro-architecture: single one or multiple sub-accelerator?

 Latter with merely two diverse workloads: denser or sparser
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ViTCoD Accelerator: Design Explorations

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Design explorations:

 Dataflows: S-stationary or K-stationary?

 The latter is better suited for resulting sparse attention patterns

S-stationary K-stationary



ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines
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ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines

 Tiling and spatial or temporal mappings
 Q * KT 

 S * V



ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines
 Inter- or Intra-MAC accumulation



ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines
 Inter- or Intra-MAC accumulation
 Reconfigurability



Evaluation Setup and Baselines

 Evaluation Setup
 Seven ViT Models: 

 DeiT-Base/Small/Tiny, LeViT-128/192/256 for image classification
 Strided Transformer for human pose estimation

 Datasets: 
 ImageNet and Human3.6M

 Metrics: 
 Accuracy, Latency speedups

 Benchmark Baselines
 Commercial devices

 CPU, GPU, EdgeGPU
 Customized accelerators

 SpAtten, Sanger



Evaluation Setup and Baselines

 Benchmark Baselines:
 Commercial devices

 CPU, GPU, EdgeGPU

[8] K. Bong, et. al., JSSC’16



Evaluation Setup and Baselines

 Evaluation Setup
 Layout floorplan



Evaluation: ViTCoD over SOTA Accelerators

 ViTCoD over CPU/GPU platforms
 ViTCoD achieves up to 235.3x, 160.6x, and 86x speedups over CPU, 

EdgeGPU and GPU

 ViTCoD over SOTA attention accelerators
 ViTCoD achieves 10.1x and 6.8x speedups over SpAtten and Sanger

Core attention speedups (90% sparsity)



Evaluation of ViTCoD Algorithm

 Evaluate ViTCoD’s split and conquer algorithm
 ViTCoD reduce 45.1% ∼ 85.8% and 72.0% ∼ 84.3% latency of attention 

layers for DeiT and LeViT, respectively, while leading to a comparable 
model accuracy (i.e., < 1% accuracy drop)



Evaluation of ViTCoD Algorithm

 Evaluate ViTCoD’s auto-encoder module
 ViTCoD compress 50% Q/K vectors, e.g., 12 heads  6 heads, with < 

0.5% accuracy drops



Evaluation of ViTCoD Accelerators

 Averaged across 60% ~ 90% sparsity
 ViTCoD achieves 6.8x and 4.3x speedups over SpAtten and Sanger
 ViTCoD achieves 9.8x energy efficiency over the most competitive 

baseline Sanger
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Summary

In this work, we

 Propose the first Vision Transformer algorithm & 
accelerator co-design framework, dubbed ViTCoD

 On the algorithm level, ViTCoD integrates a split and 
conquer training and an auto-encoder module without 
compromising the accuracy

 On the hardware level, GCoD further develop a dedicated 
two-pronged accelerator with encoder/decoder modules

Acknowledge: NSF EPCN & RTML programs
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Background: Tremendously Growing AR/VR Market

 Augmented and virtual reality (VR/AR) market is blooming
 $766 billion by 2025
 Compound annual growth rate (CAGR) of 73.7% [1]

[1] Market Research Future (MRFR), 2021



Background: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
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Background: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
 AR/VR devices with eye tracking modalities

 Foveated rendering application [2]

[2] The Evolution of High Performance Foveated Rendering, Qualcomm 2021



Motivation: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
 Challenges for eye tracking in AR/VR [3]
 >240 FPS
 Small form factor
 Power consumption in mW
 Visual privacy



Motivation: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
 Challenges for eye tracking in AR/VR [3]
 >240 FPS
 Small form factor
 Power consumption in mW
 Visual privacy

 Existing works [4,5]
 An order of magnitude slower (i.e., 30 FPS)
 Large form factor and low visual privacy due to 

the adopted lens-based cameras

 Fail to meet real-time application requirements 

[3] C. Liu, et. al., IDEM’21 
[4] Y. Feng, et. al., IEEE VR’22 
[5] K Bong, et. al., VLSI’15



 Why existing eye tracking can not satisfy the requirements?
 Rely on lens-based cameras  Limitations

 Large form factor
 High communication cost between camera and backend processor
 Low visual privacy

Limitations of Existing Solutions



Unexplored Opportunities for Eye Tracking?

 Opportunity 1: Can we build a lensless eye tracking system?
 A lensless camera, i.e., FlatCam [6]

 ✅ Small form factor, i.e., 5-10× thinner
 ✅ Visual privacy

[6] M. Asif, et. al., TCI’17



Unexplored Opportunities for Eye Tracking?

 Opportunity 1: Can we build a lensless eye tracking system?
 A lensless camera, i.e., FlatCam [6]

 ✅ Small form factor, i.e., 5-10× thinner
 ✅ Visual privacy

 Opportunity 2: Leverage end-to-end co-design?
 An AI acceleration chip featuring algorithm and accelerator co-design

 ✅ >240 FPS 
 ✅ mW power consumption

[6] M. Asif, et. al., TCI’17



 Proposed FlatCam-based algorithm & accelerator co-design 
(EyeCoD) for accelerating eye tracking in AR/VR devices
 Incorporating three features:

 Sensing-processing interface
 Predict-then-focus algorithm pipeline
 Dedicated accelerator attached to FlatCam

Proposed EyeCoD: Algorithm & Accel. Co-Design

Algorithm & Accelerator
Co-Design

EyeCoD AcceleratorEyeCoD Algorithm

Eye segmentation using RITNet
ROI Prediction

Gaze estimation using FBNet
Gaze Estimation

Predict-then-focus Pipeline



 Proposed FlatCam-based algorithm & accelerator co-design 
(EyeCoD) for accelerating eye tracking in AR/VR devices

 Challenges to achieve EyeCoD: small form factor vs. large DNNs
 On the algorithm level, how to track FlatCam captured eye images 

efficiently without compromising task accuracy?
 On the hardware level, how to leverage and support EyeCoD algorithm 

for further boosting the acceleration efficiency?

Proposed EyeCoD: Algorithm & Accel. Co-Design

Algorithm & Accelerator
Co-Design

EyeCoD AcceleratorEyeCoD Algorithm

Eye segmentation using RITNet
ROI Prediction

Gaze estimation using FBNet
Gaze Estimation

Predict-then-focus Pipeline



Our Overall Contributions in EyeCoD

In this work, we
 Propose the first lensless FlatCam-based eye tracking algorithm & 

accelerator co-design framework, dubbed EyeCoD

 On the system level, EyeCoD advocates lensless FlatCams instead of 
lens-based cameras to facilitate small form factor in mobile VR devices

 On the algorithm level, EyeCoD integrates a predict-then-focus pipeline 
to first predict ROIs and then estimate gazes merely based on ROIs,
without compromising task accuracy

 On the hardware level, EyeCoD further develops a dedicated 
accelerator attached to FlatCams for accelerating EyeCoD algorithm



EyeCoD Overview: Eye Tracking System

EyeCoD Overall System: 

The core idea on the system level is to replace lens-based cameras with 
lensless FlatCams thinner + reduced distance btw cameras and processors
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Proposed EyeCoD System for Eye Tracking: Overview 

EyeCoD System: 

The core idea on the system level is to replace lens-based cameras with 
lensless FlatCams thinner + reduced distance btw cameras and processors

a binary coded mask

Least-square objective:
 X: Reconstructed image
 y: sensor measurement



Proposed EyeCoD System for Eye Tracking: Overview 

EyeCoD Algorithm: 

The core idea on the algorithm level is to first predict the ROIs before 
estimating the gaze direction  reduced the required computational cost 



EyeCoD Accelerator: 

The core idea on the accelerator level is to develop a dedicated accelerator 
attached to FlatCams accelerated computations and data movements

Proposed EyeCoD System for Eye Tracking: Overview 



EyeCoD Algorithm: Predict-then-focus Pipeline

 Challenge: How to aggressively reduce the model complexity?
 Design insight: 

 Perform gaze estimation after extracting ROIs

 EyeCoD leverages the following fact: 
 The movement of eyes is much slower than that of gaze direction [7]

 ROI prediction is only needed once for every 50 frames
 Gaze estimation need to be computed every frame

[7] C. Palmero, et. al., Sensor’21



EyeCoD Algorithm: Predict-then-focus Pipeline

 The proposed predict-then-focus pipeline
 Stage 1: Image reconstruction after FlatCam

 Sensing-processing interface: replaces both camera sensors and the first 
layer of the eye tracking model  FlatCam’s coded masks
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 Predict and crop the

most informative area of eyes
(i.e., pupil, iris, and sclera) 

 Once per 50 frames



EyeCoD Algorithm: Predict-then-focus Pipeline

 The proposed predict-then-focus pipeline
 Stage 1: Image reconstruction after FlatCam

 Sensing-processing interface replaces both FlatCam sensing and the first 
layer of following eye tracking models  FlatCam’s coded masks

 Stage 2: ROI prediction
 Predict and crop the

most informative area of eyes
(i.e., pupil, iris, and sclera) 

 Once per 50 frames

 Stage 3: Gaze estimation
 Estimate the gaze direction

based on extracted ROIs
 Perform for each frame



EyeCoD Accelerator

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations

 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration

 Intra-channel reuse for depth-wise conv layers’ hardware utilization

 Dedicated support for activation partition and cross layer processing



EyeCoD Accelerator: Design Challenge 1

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration

 ✘ Time-multiplexing mode
 ✘ Concurrent mode

Illustrating Time-multiplexing Mode

High reuse opportunity

Peak resource usage for ROI prediction

Illustrating Concurrent Mode

Amortizing ROI prediction workload

Low reuse opportunity



EyeCoD Accelerator: Design Challenge 1

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration

 ✘ Time-multiplexing mode
 ✘ Concurrent mode

Illustrating Time-multiplexing Mode

High reuse opportunity

Peak resources usage for ROI prediction

Illustrating Concurrent Mode

Amortizing ROI prediction workload

Low reuse opportunity

 Can we marry the best of both modes?



EyeCoD Accelerator: Design Challenge 2

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration
 Depthwise conv layers (DW): Reduced mode size yet low utilization

 ✔ 7.9% FLOPs of the whole workload
 ✘ yet 34% overall processing time

Generic/Point-wise Conv Layer

Weight

Input Act Output Act

= =

Weight

Input Act Output Act

Depth-wise Conv Layer (DW)



EyeCoD Accelerator: Design Challenge 2

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration
 Depthwise conv layers (DW): Reduced mode size yet low utilization

 ✔ 7.9% FLOPs of the whole workload
 ✘ yet 34% overall processing time

 Can we improve the input activation reuses  high MAC utilization?
Generic/Point-wise Conv Layer

Weight

Input Act Output Act

= =

Weight

Input Act Output Act

Depth-wise Conv Layer (DW)



EyeCoD Accelerator: Design Challenge 3

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration
 Depthwise conv layers (DW): Reduced mode size yet low utilization
 Dedicated support for activation partition and cross layer processing



EyeCoD Accelerator: Feature 1

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Observation: Fluctuated utilization for gaze estimation

Visualizing the temporal MAC utilization of the gaze estimation
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 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Observation: The utilization for gaze estimation fluctuate
 Proposed: Amortize ROI prediction workload to underutilized MACs

Gaze estimation only Concurrent ROI prediction 
and gaze estimation

Amortize ROI prediction workload

Higher reuse opportunity



EyeCoD Accelerator: Feature 1

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Observation: The utilization for gaze estimation fluctuate
 Proposed: Amortize ROI prediction workload to underutilized MACs

Gaze estimation only Concurrent ROI prediction 
and gaze estimation

Amortize ROI prediction workload 
→ 2.31× speed up over the time-multiplexing mode
Higher reuse opportunity 
→ 1.6× higher energy efficiency over the concurrent mode



EyeCoD Accelerator: Feature 2

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Intra-channel reuse for boosting depth-wise conv layers’ ultilization
 Column-wise intra-channel reuse → 3× utilizaiotn
 Deeper row-wise intra-channel reuse → 2× utilization

Weight Input Act Output Act

Deeper row-wise 
Intra-channel Reuses

Mapping on 
MAC Lanes

Weight Input Act Output ActMapping on 
MAC Lanes

Column-wise 
Intra-channel Reuses



EyeCoD Accelerator: Feature 3

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Intra-channel reuse for boosting depth-wise conv layers’ utilization
 Dedicated support for activation partition and cross layer processing

 Support versatile operations: 
 Partition operation
 Concatenation operation
 Up/Down-sampling operation

Proposed Activation Memory 
Storage Layout (i.e., Address) (An 
Example for a 6×6×24 Act Tensor)
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Storage Layout (i.e., Address) (An 
Example for a 6×6×24 Act Tensor)
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 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration 
 Intra-channel reuse for depth-wise convolution layers
 Dedicated support for activation partition and cross layer processing
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Proposed Sequential-write-parallel-read Activation 
Buffer for 2× Higher Activation Bandwidth



EyeCoD Accelerator: Feature 3

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration 
 Intra-channel reuse for depth-wise convolution layers
 Dedicated support for activation partition and cross layer processing

Sequential-
write

Parallel-
read

Proposed Sequential-write-parallel-read Activation 
Buffer for 2× Higher Activation Bandwidth



Evaluation Setup and Baselines

 Evaluation Setup
 Considered Models: 

 RITNet for eye segmentation
 FBNet-C100 for gaze estimation

 Eye Tracking Datasets: 
 OpenEDS 2019 for eye segmentation
 OpenEDS 2020 for gaze estimation

 Evaluation Metrics: 
 Gaze estimation accuracy
 Model FLOPs, and task throughput and energy efficiency

 Benchmark Baselines:
 EdgeCPU (Raspberry Pi) and CPU (AMD EPYC 7742)
 EdgeGPU (Nvidia Jetson TX2) and GPU (Nvidia 2080Ti)
 Prior eye tracking accelerator:  CIS-GEP [8]

[8] K. Bong, et. al., JSSC’16



Evaluation Setup and Baselines

 Evaluation Setup
 Benchmark Baselines:

 EdgeCPU (Raspberry Pi) and CPU (AMD EPYC 7742)
 EdgeGPU (Nvidia Jetson TX2) and GPU (Nvidia 2080Ti)
 Eye tracking processor: CIS-GEP [8]

[8] K. Bong, et. al., JSSC’16



Evaluation Setup and Baselines

 Evaluation Setup
 EyeCoD AI Chip and Configurations:

 Silicon prototype: 

 Accelerator configurations: 



Evaluation: EyeCoD over SOTA Accelerators

 EyeCoD over CPU/GPU platforms: 
 EyeCoD achieves up to 2966x, 12.7x, 14.8x, and 2.61x throughput 

improvements over EdgeCPU, CPU, EdgeGPU, and GPU

 EyeCoD over SOTA eye tracking accelerators: 
 EyeCoD achieves on average 12.8x throughput improvement and 8.1x

higher energy efficiency over CIS-GEP, respectively.



Evaluation of EyeCoD Algorithm Pipeline

 ROI prediction based on eye segmentation model
 EyeCoD achieves up to 16x FLOPs reduction over the SOTA RITNet with 

a comparable (~93%) mIOU on FlatCam captured images

 Validate the effectiveness of EyeCoD’s ROI prediction



Evaluation of EyeCoD Algorithm Pipeline

 Gaze estimation on top of the predicted ROIs
 EyeCod with FBNet-C100 (8-bit) achieves 0.04 error reduction while 

reducing 78.2% FLOPs, compared with the award winner using ResNet18

 Validate the effectiveness of EyeCoD algorithm pipeline



Evaluation of Our EyeCoD Accelerator

 Overall throughput or energy efficiency improvements: 
 EyeCoD achieves 4x over lens-based eye tracking system

 Breakdown analysis: 
 P.F. leads to 1.99x improvements, Input., Partial., and Depth. further 

offers 1.22x, 1.28x, and 1.29x improvements, respectively.

 * : Using time-multiplexing mode
 P.F. : EyeCoD w/ predict-then-focus pipeline
 Input. : Sequential-write-parallel-read input activation buffer design
 Partial. : Partial time-multiplexing workload orchestration
 Depth. : Intra-channel reuse for depth-wise layers



Summary

EyeCoD integrates system-, algorithm-, and accelerator-level 
innovations: 

 The first FlatCam based algorithm & accelerator co-design 
framework for eye tracking that can simultaneously 
meet all three requirements for next-generation AR/VR devices

 On the algorithm level, EyeCoD integrates a predict-then-focus 
pipeline to largely reduce the computational cost without 
compromising the task accuracy;

 On the hardware level, EyeCoD further develops a dedicated 
accelerator attached to FlatCams for accelerating both 
computations and data movements.

Acknowledge: NSF RTML & EPCN programs



Demonstration
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ShiftAddNAS: Background and Motivation
 Two branches of SOTA DNN design: Trade off accuracy and efficiency
 Multiplication-based DNNs, e.g., CNNs, Transformers

 Achieve unprecedented task accuracy
 Power hungry  Challenge their deployment to edge devices
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ShiftAddNAS: Background and Motivation
 Two branches of SOTA DNN design: Trade off accuracy and efficiency
 Multiplication-based DNNs, e.g., CNNs, Transformers

 Achieve unprecedented task accuracy
 Power hungry  Challenge their deployment to edge devices

 Multiplication-free DNNs, e.g., ShiftNet, AdderNet, ShiftAddNet
 Efficient and favor their deployment to edge devices
 Under-perform their multiplication-based counterparts in terms of task accuracy
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ShiftAddNAS: Background and Motivation

 Motivation of ShiftAddNAS
 Enable automated search for hybrid network architecture to marry the best of both worlds

 Multiplication-based operators (e.g., Conv & Attention)  High accuracy
 Multiplication-free operators (e.g., Shift & Add)  High efficiency
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Powerful DNNs

Efficient DNNs
Our goal



ShiftAddNAS: Tackled Challenges

 Motivation of ShiftAddNAS
 Enable automated search for hybrid network architecture to marry the best of both worlds

 Multiplication-based operators (e.g., Conv & Attention)  High accuracy
 Multiplication-free operators (e.g., Shift & Add)  High efficiency

 Associated Challenges
 How to construct an effective hybrid search space? 
 More operators  larger SuperNets, but SOTA weight sharing strategy is not applicable



ShiftAddNAS: Our Contributions

For the first time, we

 Develop ShiftAddNAS, featuring a hybrid search space that incorporates both 
multiplication-based and multiplication-free operators

 Propose a new heterogeneous weight sharing strategy that enables automated search 
for hybrid operators with heterogeneous weight distributions

 Conduct extensive experiments on both CV and NLP tasks to validate the effectiveness 
of our proposed ShiftAddNAS framework



Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Seven different blocks

 Attn, Conv, Shift,  and Add
 Attn+Conv, Attn+Add, and Attn+Shift

 Elastic dimensions for MLPs, embeddings, and heads

Encoder block types [Attn, Attn+Conv, Attn+Shift]
[Attn+Add, Conv, Shift, Add]

Decoder block types [Attn, Attn+Conv]
[Attn+Shift, Attn+Add]

Num. of decoder blocks [6, 5, 4, 3, 2, 1]
Elastic embed. Dim. [1024, 768, 512]
Elastic head number [16, 8, 4]
Elastic MLP dim. [4096, 3072, 2048, 1024]
Arbitrary Attn [3, 2, 1]

The Search Space for NLP Tasks



Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Seven different blocks

 Attn, Conv, Shift,  and Add
 Attn+Conv, Attn+Add, and Attn+Shift

 Elastic dimensions for MLPs, embeddings, and heads



Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Search space for CV tasks

 Multi-resolution
 Various spatial resolutions or scales are essential for CV tasks

Block types [Attn, Conv, Shift, Add]
Num. of 562 × 128 blocks [1, 2, 3, 4]
Num. of 282 × 256 blocks [1, 2, 3, 4]
Num. of 142 × 512 blocks [3, 4, 5, 6, 7]
Num. of 72 × 1024 blocks [4, 5, 6, 7, 8, 9]

The Search Space for CV Tasks



Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Search space for CV tasks

 Multi-resolution
 Various spatial resolutions or scales are essential for CV tasks



Contribution 2: Heterogenous Weight Sharing Strategy

 One-shot NAS with heterogeneous weight sharing
 Weight sharing among Conv, Add, and Shift blocks



NASA: Dedicated Accelerator for Hybrid Networks

 Micro-architecture
 Multi-chunk design with customized PEs  Support heterogeneous layers
 Four-level memory hierarchy  Enhance data locality

Micro-Architecture



NASA:PE Allocation Strategy

 Challenge 1
 How to partition and then allocate limited hardware resources to multiple chunks?

 Proposed PE allocation strategy
 Balance the throughput of multiple chunks Minimize the overall latency 
 Formally, allocated PEs in chunks are proportional to the corresponding operations under the 

area budget

𝑁𝑁𝐶𝐶
𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

=
𝑁𝑁𝑆𝑆

𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
=

𝑁𝑁𝐴𝐴
𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

,

𝑠𝑠. 𝑡𝑡.𝐴𝐴𝐶𝐶 + 𝐴𝐴𝑆𝑆 + 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.



NASA: Auto-Mapper

 Challenge 2
 Our bigger design space  Nontrivial to manually identify the optimal dataflow

 Proposed Auto-Mapper
 Enable automated search for the optimal dataflow 
 Nested for-loop description:
 Loop ordering factors:  Determine the data reuse patterns
 Loop tiling factors:  Determine how to store data within each memory hierarchy



ShiftAddNAS: Experimental Setting

 NLP tasks
 Two datasets

 WMT’14 English to French (En-Fr)
 WMT’14 English to German (En-De)

 Five evaluation metrics
 BLEU score
 Number of parameters/FLOPs
 Hardware energy and latency

 Four baselines
 Transformer
 Lightweight Conv
 Lite Transformer
 HAT

 CV tasks
 One dataset: ImageNet

 Five evaluation metrics
 Accuracy
 Number of parameters/MACs
 Hardware energy and latency

 Four categories of baselines
 Multiplication-free NNs

 AdderNet, DeepShift, BNN

 CNNs
 ResNet, SENet

 Transformer
 ViT, DeiT, VITAS, Autoformer

 CNN-Transformer
 BoT, HR-NAS, BossNAS



ShiftAddNAS: Experimental Results for NLP Tasks

 Overall Improvement on NLP
 ShiftAddNAS achieves up to +2 

BLEU scores improvement and 
69.1% and 69.2% energy and 
latency savings



ShiftAddNAS: Experimental Results for CV Tasks

 Overall Improvement on CV
 ShiftAddNAS on average 

offers a +0.8% ~ +7.7% higher 
accuracy and 24% ~ 93% 
energy savings



Summary

For the first time, we

 Develop ShiftAddNAS, featuring a hybrid search space that incorporates both 
multiplication-based and multiplication-free operators

 Propose a new heterogeneous weight sharing strategy that enables automated 
search for hybrid operators with heterogeneous weight distributions

 Conduct extensive experiments on both CV and NLP tasks to validate the 
effectiveness of our proposed ShiftAddNAS framework

Open-source Code: 
https://github.com/RICE-EIC/ShiftAddNAS



Q & A

Thank you for your listening!
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