
Towards Ubiquitous Edge Intelligence: Efficient ML
Algorithm and Hardware Co-Design

Presenter: Haoran You Advisor: Yingyan Lin

Georgia Institute of Technology

Research Project Summary

Depth

Layer

MAC

Energy Pyramid of DNNs

Research Project Summary

Depth

Layer

MAC

Energy Pyramid of DNNs

Algorithm
Pruning Quantization

NAS
Efficient Training & Inference

ShiftAddNet
…

Research Project Summary

Depth

Layer

MAC

Energy Pyramid of DNNs

Algorithm
Pruning Quantization

NAS
Efficient Training & Inference

ShiftAddNet

Hardware
Accelerator

Micro-architecture
Memory
Hierarchy

Dataflow & Mapping

Scheduling

… …

Algorithm-Hardware Co-Design

Table of Content

 Algorithm-Hardware Co-Design

EyeCoD [ISCA’22]ViTCoD [HPCA’23] ShiftAddNAS [ICML’22]
& NASA [ICCAD’22]

ViTCoD: Vision Transformer Acceleration via
Dedicated Algorithm and Accelerator Co-Design

Haoran You1, Zhanyi Sun2, Huihong Shi1, Zhongzhi Yu1,
Yang Zhao2, Yongan Zhang1, Chaojian Li1, Baopu Li3, and Yingyan Lin1

1Georgia Institute of Technology
2Rice University

3Oracle Health and AI

The 29th IEEE International Symposium on
High-Performance Computer Architecture (HPCA 2023)

Background of Vision Transformer (ViTs)

 ViTs achieve SOTA performance on various vision tasks
 Input: 2D image  input tokens/patches

 Core Model: Self-Attention and MLP

Input Tokens

ViT Models

Background of Vision Transformer (ViTs)

 ViTs achieve SOTA performance on various vision tasks

Background of Vision Transformer (ViTs)

 ViTs achieve SOTA performance on various vision tasks
 Input: 2D image  input tokens

 Core Model: Self-Attention and MLP

 But ViTs still require a high computational cost
as compared to convolutional networks (CNNs)

Input Tokens

ViT Models

What are the Bottlenecks in ViTs?

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs

What are the Bottlenecks in ViTs?

EdgeGPU: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs
 In terms of real Latency, it consistently accounts for over 50% latency

What are the Bottlenecks in ViTs?

EdgeGPU: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs
 In terms of real Latency, it consistently accounts for over 50% latency

As high as 69%!

What are the Bottlenecks in ViTs?

EdgeGPU: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs
 In terms of real Latency, it consistently accounts for over 50% latency

As high as 69%!MatMul occupy up to 53%!

Can Previous Attention Accelerators Help?

[1] Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture, MICRO 2021
[2] DOTA: detect and omit weak attentions for scalable transformer acceleration, ASPLOS 2022

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs
 In terms of real Latency, it consistently accounts for over 50% latency

 Can we use previous sparse attention accelerator to handle it?
 No, they are dedicated to NLP Transformers

Reconfigurable Architecture
E.g., Sanger [1], DOTA [2], etc

Dynamic Sparsity Patterns
for Different Inputs

Attention in ViTs and NLP Transformers

 Comparison of self-attentions in ViTs and NLP Transformers
 Difference 1:

Fixed number of input tokens vs. dynamic number of input tokens

Input Tokens for NLP Transformer [1]

[1] Learned Token Pruning for Transformers, KDD 2022

Input Tokens for ViTs

Attention in ViTs and NLP Transformers

 Comparison of self-attentions in ViTs and NLP Transformers
 Difference 2:

Up to 90% sparsity in ViTs’ attention maps vs. 50% ~ 60% in NLP
Transformer’s attention maps

Challenges and Unexplored Opportunities for ViTs?

 Challenge 1: Accelerate ViTs w/o on-the-fly reconfiguration?
 Opportunity 1: Fixed attention sparse patterns in ViTs

 ✅ Fixed sparse patterns and thus stationary data accesses
 ✅ Strong “tokens”

Fixed sparse pattern Reorder “strong” tokensDense attention map

Challenges and Unexplored Opportunities for ViTs?

 Challenge 1: Accelerate ViTs w/o on-the-fly reconfiguration?
 Opportunity 1: Fixed attention sparse patterns in ViTs

 ✅ Fixed sparse patterns and thus stationary data accesses
 ✅ Strong “tokens”

Fixed sparse pattern Reorder “strong” tokens

Challenges and Unexplored Opportunities for ViTs?

 Challenge 1: Accelerate ViTs w/o on-the-fly reconfiguration?
 Opportunity 1: Fixed attention sparse patterns in ViTs

 Challenge 2: How to balance computations vs. data movements?
 Sparse attention makes data movements a bigger problem

Challenges and Unexplored Opportunities for ViTs?

 Challenge 1: Accelerate ViTs w/o on-the-fly reconfiguration?
 Opportunity 1: Fixed attention sparse patterns in ViTs

 Challenge 2: How to balance computations vs. data movements?
 Opportunity 2: Redundancy across attention heads

Challenges and Unexplored Opportunities for ViTs?

 Challenge 1: Accelerate ViTs w/o on-the-fly reconfiguration?
 Opportunity 1: Fixed attention sparse patterns in ViTs

 Challenge 2: How to balance computations vs. data movements?
 Opportunity 2: Redundancy across attention heads

Proposed ViTCoD: Algorithm & Accel. Co-Design

 Proposed ViT algorithm & accelerator co-design (ViTCoD) for
accelerating ViTs with sparse attention
 Split and conquer algorithm to cluster the workloads into denser/sparser
 Auto-encoder module to compress attention heads before transmitting

Algorithm & Accelerator
Co-Design

ViTCoD AcceleratorViTCoD Algorithm

Eye segmentation using RITNet
Split and Conquer

Gaze estimation using FBNet
Auto-encoder

Save both computation &
data movements

and

Dedicated acceleration

Our Overall Contributions in ViTCoD

In this work, we
 Propose the first Vision Transformer algorithm & accelerator co-design

framework, dubbed ViTCoD

 On the algorithm level, ViTCoD
 prunes and polarizes the attention maps to have either denser or sparser

fixed patterns for regularizing two levels of workloads
 integrate a lightweight and learnable auto-encoder module to enable

trading dominant high-cost data movements for lower-cost computations

 On the hardware level, ViTCoD
 adopts a dedicated accelerator to simultaneously handle the enforced

denser and sparser workloads
 integrates on-chip encoder and decoder engines to reduce data movements

ViTCoD Overview

ViTCoD Algorithm:

The core idea on the algorithm level is to reduce both computations and
data movements in core self-attention modules.

ViT Self-attention

ViTCoD Overview

ViTCoD Algorithm:

The core idea on the algorithm level is to reduce both computations and
data movements in core self-attention modules.

ViT Self-attention

Split and Conquer  Save Computations

ViTCoD Overview

ViTCoD Algorithm:

The core idea on the algorithm level is to reduce both computations and
data movements in core self-attention modules.

ViT Self-attention

Split and Conquer  Save Computations

Auto-encoder Module  Save Data Movements

ViTCoD Overview

ViTCoD Accelerator:

The core idea on the accelerator level is to develop a dedicated accelerator
for supporting algorithms  accelerated computations and data movements

Auto-encoder Module
 Save Data Movements

Split and Conquer
 Save Computations

ViTCoD Overview

ViTCoD Accelerator:

The core idea on the accelerator level is to develop a dedicated accelerator
for supporting algorithms  accelerated computations and data movements

Auto-encoder Module
 Save Data Movements

Split and Conquer
 Save Computations

ViTCoD Algorithm: Split and Conquer

 Challenge 1: How to aggressively reduce the computation?
 Design insights:

 Pruning with fixed masks
 Attention map reordering

 ViTCoD leverages the following observation:
 The attention maps can be pruned up to 90% sparsity with fixed masks

 There are “strong” tokens in the attention

Fixed sparse pattern Reorder “strong” tokensDense attention map

ViTCoD Algorithm: Split and Conquer

 Visualizing the pruned or reordered attention maps on DeiT-B

ViTCoD Algorithm: Auto-Encoder

 Challenge 2: How to aggressively reduce the data movements?
 Design insights:

 Trade costly data movements with computations

 ViTCoD leverages the following observation:
 There is redundancy among attention heads
 Compress the Q/K data before transmitting from off-chip to on-chip

ViTCoD Algorithm: Auto-Encoder

 Visualizing the training trajectory of DeiT-T/S/B with our
proposed auto-encoder (AE) modules

ViTCoD Algorithm: Training Pipeline

 Overall training pipeline
 Input:

 Pretrained ViT models

 Step 1: Insert AE modules
 Finetuning for 100 epochs

 Step 2: Split and conquer
 Prune and reorder
 Finetuning for 100 epochs

ViTCoD Accelerator: Opportunities

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Opportunities:

 Fixed and structurally sparse Attention

ViTCoD Accelerator: Opportunities

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Opportunities:

 Fixed and structurally sparse Attention

 Compact Q and K representation

ViTCoD Accelerator: Design Explorations

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Design explorations:

 Micro-architecture: single one or multiple sub-accelerator?

 Latter with merely two diverse workloads: denser or sparser

ViTCoD Accelerator: Design Explorations

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Design explorations:

 Dataflows: S-stationary or K-stationary?

S-stationary

ViTCoD Accelerator: Design Explorations

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Design explorations:

 Dataflows: S-stationary or K-stationary?

 The latter is better suited for resulting sparse attention patterns

S-stationary K-stationary

ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines

ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines

ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines

 Tiling and spatial or temporal mappings
 Q * KT

ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines

 Tiling and spatial or temporal mappings
 Q * KT

 S * V

ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines
 Inter- or Intra-MAC accumulation

ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines
 Inter- or Intra-MAC accumulation
 Reconfigurability

Evaluation Setup and Baselines

 Evaluation Setup
 Seven ViT Models:

 DeiT-Base/Small/Tiny, LeViT-128/192/256 for image classification
 Strided Transformer for human pose estimation

 Datasets:
 ImageNet and Human3.6M

 Metrics:
 Accuracy, Latency speedups

 Benchmark Baselines
 Commercial devices

 CPU, GPU, EdgeGPU
 Customized accelerators

 SpAtten, Sanger

Evaluation Setup and Baselines

 Benchmark Baselines:
 Commercial devices

 CPU, GPU, EdgeGPU

[8] K. Bong, et. al., JSSC’16

Evaluation Setup and Baselines

 Evaluation Setup
 Layout floorplan

Evaluation: ViTCoD over SOTA Accelerators

 ViTCoD over CPU/GPU platforms
 ViTCoD achieves up to 235.3x, 160.6x, and 86x speedups over CPU,

EdgeGPU and GPU

 ViTCoD over SOTA attention accelerators
 ViTCoD achieves 10.1x and 6.8x speedups over SpAtten and Sanger

Core attention speedups (90% sparsity)

Evaluation of ViTCoD Algorithm

 Evaluate ViTCoD’s split and conquer algorithm
 ViTCoD reduce 45.1% ∼ 85.8% and 72.0% ∼ 84.3% latency of attention

layers for DeiT and LeViT, respectively, while leading to a comparable
model accuracy (i.e., < 1% accuracy drop)

Evaluation of ViTCoD Algorithm

 Evaluate ViTCoD’s auto-encoder module
 ViTCoD compress 50% Q/K vectors, e.g., 12 heads  6 heads, with <

0.5% accuracy drops

Evaluation of ViTCoD Accelerators

 Averaged across 60% ~ 90% sparsity
 ViTCoD achieves 6.8x and 4.3x speedups over SpAtten and Sanger
 ViTCoD achieves 9.8x energy efficiency over the most competitive

baseline Sanger

N
or

m
al

ize
d

La
te

nc
y

N
or

m
al

ize
d

En
er

gy

Ef
fic

ie
nc

y

Summary

In this work, we

 Propose the first Vision Transformer algorithm &
accelerator co-design framework, dubbed ViTCoD

 On the algorithm level, ViTCoD integrates a split and
conquer training and an auto-encoder module without
compromising the accuracy

 On the hardware level, GCoD further develop a dedicated
two-pronged accelerator with encoder/decoder modules

Acknowledge: NSF EPCN & RTML programs

EyeCoD: Eye Tracking System Acceleration via
FlatCam-based Algorithm & Accelerator Co-Design
Haoran You*1, Cheng Wan*1, Yang Zhao*1, Zhongzhi Yu*1, Yonggan Fu1, Jiayi Yuan1,

Shang Wu1, Shunyao Zhang1, Yongan Zhang1, Chaojian Li1, Vivek Boominathan1,
Ashok Veeraraghavan1, Ziyun Li2, and Yingyan Lin1

1Rice University
2Meta Reality Labs

The 49th International Symposium on
Computer Architecture (ISCA 2022)

Background: Tremendously Growing AR/VR Market

 Augmented and virtual reality (VR/AR) market is blooming
 $766 billion by 2025
 Compound annual growth rate (CAGR) of 73.7% [1]

[1] Market Research Future (MRFR), 2021

Background: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR

Background: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
 AR/VR devices with eye tracking modalities

Background: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
 AR/VR devices with eye tracking modalities

 Foveated rendering application [2]

[2] The Evolution of High Performance Foveated Rendering, Qualcomm 2021

Motivation: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
 Challenges for eye tracking in AR/VR [3]
 >240 FPS
 Small form factor
 Power consumption in mW
 Visual privacy

Motivation: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
 Challenges for eye tracking in AR/VR [3]
 >240 FPS
 Small form factor
 Power consumption in mW
 Visual privacy

 Existing works [4,5]
 An order of magnitude slower (i.e., 30 FPS)
 Large form factor and low visual privacy due to

the adopted lens-based cameras

 Fail to meet real-time application requirements

[3] C. Liu, et. al., IDEM’21
[4] Y. Feng, et. al., IEEE VR’22
[5] K Bong, et. al., VLSI’15

 Why existing eye tracking can not satisfy the requirements?
 Rely on lens-based cameras  Limitations

 Large form factor
 High communication cost between camera and backend processor
 Low visual privacy

Limitations of Existing Solutions

Unexplored Opportunities for Eye Tracking?

 Opportunity 1: Can we build a lensless eye tracking system?
 A lensless camera, i.e., FlatCam [6]

 ✅ Small form factor, i.e., 5-10× thinner
 ✅ Visual privacy

[6] M. Asif, et. al., TCI’17

Unexplored Opportunities for Eye Tracking?

 Opportunity 1: Can we build a lensless eye tracking system?
 A lensless camera, i.e., FlatCam [6]

 ✅ Small form factor, i.e., 5-10× thinner
 ✅ Visual privacy

 Opportunity 2: Leverage end-to-end co-design?
 An AI acceleration chip featuring algorithm and accelerator co-design

 ✅ >240 FPS
 ✅ mW power consumption

[6] M. Asif, et. al., TCI’17

 Proposed FlatCam-based algorithm & accelerator co-design
(EyeCoD) for accelerating eye tracking in AR/VR devices
 Incorporating three features:

 Sensing-processing interface
 Predict-then-focus algorithm pipeline
 Dedicated accelerator attached to FlatCam

Proposed EyeCoD: Algorithm & Accel. Co-Design

Algorithm & Accelerator
Co-Design

EyeCoD AcceleratorEyeCoD Algorithm

Eye segmentation using RITNet
ROI Prediction

Gaze estimation using FBNet
Gaze Estimation

Predict-then-focus Pipeline

 Proposed FlatCam-based algorithm & accelerator co-design
(EyeCoD) for accelerating eye tracking in AR/VR devices

 Challenges to achieve EyeCoD: small form factor vs. large DNNs
 On the algorithm level, how to track FlatCam captured eye images

efficiently without compromising task accuracy?
 On the hardware level, how to leverage and support EyeCoD algorithm

for further boosting the acceleration efficiency?

Proposed EyeCoD: Algorithm & Accel. Co-Design

Algorithm & Accelerator
Co-Design

EyeCoD AcceleratorEyeCoD Algorithm

Eye segmentation using RITNet
ROI Prediction

Gaze estimation using FBNet
Gaze Estimation

Predict-then-focus Pipeline

Our Overall Contributions in EyeCoD

In this work, we
 Propose the first lensless FlatCam-based eye tracking algorithm &

accelerator co-design framework, dubbed EyeCoD

 On the system level, EyeCoD advocates lensless FlatCams instead of
lens-based cameras to facilitate small form factor in mobile VR devices

 On the algorithm level, EyeCoD integrates a predict-then-focus pipeline
to first predict ROIs and then estimate gazes merely based on ROIs,
without compromising task accuracy

 On the hardware level, EyeCoD further develops a dedicated
accelerator attached to FlatCams for accelerating EyeCoD algorithm

EyeCoD Overview: Eye Tracking System

EyeCoD Overall System:

The core idea on the system level is to replace lens-based cameras with
lensless FlatCams thinner + reduced distance btw cameras and processors

Proposed EyeCoD System for Eye Tracking: Overview

EyeCoD Overall System:

The core idea on the system level is to replace lens-based cameras with
lensless FlatCams thinner + reduced distance btw cameras and processors

a binary coded mask

Proposed EyeCoD System for Eye Tracking: Overview

EyeCoD System:

The core idea on the system level is to replace lens-based cameras with
lensless FlatCams thinner + reduced distance btw cameras and processors

a binary coded mask

Least-square objective:
 X: Reconstructed image
 y: sensor measurement

Proposed EyeCoD System for Eye Tracking: Overview

EyeCoD Algorithm:

The core idea on the algorithm level is to first predict the ROIs before
estimating the gaze direction  reduced the required computational cost

EyeCoD Accelerator:

The core idea on the accelerator level is to develop a dedicated accelerator
attached to FlatCams accelerated computations and data movements

Proposed EyeCoD System for Eye Tracking: Overview

EyeCoD Algorithm: Predict-then-focus Pipeline

 Challenge: How to aggressively reduce the model complexity?
 Design insight:

 Perform gaze estimation after extracting ROIs

 EyeCoD leverages the following fact:
 The movement of eyes is much slower than that of gaze direction [7]

 ROI prediction is only needed once for every 50 frames
 Gaze estimation need to be computed every frame

[7] C. Palmero, et. al., Sensor’21

EyeCoD Algorithm: Predict-then-focus Pipeline

 The proposed predict-then-focus pipeline
 Stage 1: Image reconstruction after FlatCam

 Sensing-processing interface: replaces both camera sensors and the first
layer of the eye tracking model  FlatCam’s coded masks

EyeCoD Algorithm: Predict-then-focus Pipeline

 The proposed predict-then-focus pipeline
 Stage 1: Image reconstruction after FlatCam

 Sensing-processing interface: replaces both camera sensors and the first
layer of the eye tracking model  FlatCam’s coded masks

 Stage 2: ROI prediction
 Predict and crop the

most informative area of eyes
(i.e., pupil, iris, and sclera)

 Once per 50 frames

EyeCoD Algorithm: Predict-then-focus Pipeline

 The proposed predict-then-focus pipeline
 Stage 1: Image reconstruction after FlatCam

 Sensing-processing interface replaces both FlatCam sensing and the first
layer of following eye tracking models  FlatCam’s coded masks

 Stage 2: ROI prediction
 Predict and crop the

most informative area of eyes
(i.e., pupil, iris, and sclera)

 Once per 50 frames

 Stage 3: Gaze estimation
 Estimate the gaze direction

based on extracted ROIs
 Perform for each frame

EyeCoD Accelerator

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations

 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration

 Intra-channel reuse for depth-wise conv layers’ hardware utilization

 Dedicated support for activation partition and cross layer processing

EyeCoD Accelerator: Design Challenge 1

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration

 ✘ Time-multiplexing mode
 ✘ Concurrent mode

Illustrating Time-multiplexing Mode

High reuse opportunity

Peak resource usage for ROI prediction

Illustrating Concurrent Mode

Amortizing ROI prediction workload

Low reuse opportunity

EyeCoD Accelerator: Design Challenge 1

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration

 ✘ Time-multiplexing mode
 ✘ Concurrent mode

Illustrating Time-multiplexing Mode

High reuse opportunity

Peak resources usage for ROI prediction

Illustrating Concurrent Mode

Amortizing ROI prediction workload

Low reuse opportunity

 Can we marry the best of both modes?

EyeCoD Accelerator: Design Challenge 2

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration
 Depthwise conv layers (DW): Reduced mode size yet low utilization

 ✔ 7.9% FLOPs of the whole workload
 ✘ yet 34% overall processing time

Generic/Point-wise Conv Layer

Weight

Input Act Output Act

= =

Weight

Input Act Output Act

Depth-wise Conv Layer (DW)

EyeCoD Accelerator: Design Challenge 2

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration
 Depthwise conv layers (DW): Reduced mode size yet low utilization

 ✔ 7.9% FLOPs of the whole workload
 ✘ yet 34% overall processing time

 Can we improve the input activation reuses  high MAC utilization?
Generic/Point-wise Conv Layer

Weight

Input Act Output Act

= =

Weight

Input Act Output Act

Depth-wise Conv Layer (DW)

EyeCoD Accelerator: Design Challenge 3

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration
 Depthwise conv layers (DW): Reduced mode size yet low utilization
 Dedicated support for activation partition and cross layer processing

EyeCoD Accelerator: Feature 1

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Observation: Fluctuated utilization for gaze estimation

Visualizing the temporal MAC utilization of the gaze estimation

EyeCoD Accelerator: Feature 1

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Observation: The utilization for gaze estimation fluctuate
 Proposed: Amortize ROI prediction workload to underutilized MACs

Gaze estimation only Concurrent ROI prediction
and gaze estimation

Amortize ROI prediction workload

Higher reuse opportunity

EyeCoD Accelerator: Feature 1

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Observation: The utilization for gaze estimation fluctuate
 Proposed: Amortize ROI prediction workload to underutilized MACs

Gaze estimation only Concurrent ROI prediction
and gaze estimation

Amortize ROI prediction workload
→ 2.31× speed up over the time-multiplexing mode
Higher reuse opportunity
→ 1.6× higher energy efficiency over the concurrent mode

EyeCoD Accelerator: Feature 2

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Intra-channel reuse for boosting depth-wise conv layers’ ultilization
 Column-wise intra-channel reuse → 3× utilizaiotn
 Deeper row-wise intra-channel reuse → 2× utilization

Weight Input Act Output Act

Deeper row-wise
Intra-channel Reuses

Mapping on
MAC Lanes

Weight Input Act Output ActMapping on
MAC Lanes

Column-wise
Intra-channel Reuses

EyeCoD Accelerator: Feature 3

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Intra-channel reuse for boosting depth-wise conv layers’ utilization
 Dedicated support for activation partition and cross layer processing

 Support versatile operations:
 Partition operation
 Concatenation operation
 Up/Down-sampling operation

Proposed Activation Memory
Storage Layout (i.e., Address) (An
Example for a 6×6×24 Act Tensor)

EyeCoD Accelerator: Feature 3

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Intra-channel reuse for boosting depth-wise conv layers’ utilization
 Dedicated support for activation partition and cross layer processing

 Support versatile operations:
 Partition operation
 Concatenation operation
 Up/Down-sampling operation

Proposed Activation Memory
Storage Layout (i.e., Address) (An
Example for a 6×6×24 Act Tensor)

EyeCoD Accelerator: Feature 3

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Intra-channel reuse for boosting depth-wise conv layers’ utilization
 Dedicated support for activation partition and cross layer processing

 Support versatile operations:
 Partition operation
 Concatenation operation
 Up/Down-sampling operation

Proposed Activation Memory
Storage Layout (i.e., Address) (An
Example for a 6×6×24 Act Tensor)

EyeCoD Accelerator: Feature 3

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Intra-channel reuse for depth-wise convolution layers
 Dedicated support for activation partition and cross layer processing

Sequential-
write

Parallel-
read

Proposed Sequential-write-parallel-read Activation
Buffer for 2× Higher Activation Bandwidth

EyeCoD Accelerator: Feature 3

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Intra-channel reuse for depth-wise convolution layers
 Dedicated support for activation partition and cross layer processing

Sequential-
write

Parallel-
read

Proposed Sequential-write-parallel-read Activation
Buffer for 2× Higher Activation Bandwidth

Evaluation Setup and Baselines

 Evaluation Setup
 Considered Models:

 RITNet for eye segmentation
 FBNet-C100 for gaze estimation

 Eye Tracking Datasets:
 OpenEDS 2019 for eye segmentation
 OpenEDS 2020 for gaze estimation

 Evaluation Metrics:
 Gaze estimation accuracy
 Model FLOPs, and task throughput and energy efficiency

 Benchmark Baselines:
 EdgeCPU (Raspberry Pi) and CPU (AMD EPYC 7742)
 EdgeGPU (Nvidia Jetson TX2) and GPU (Nvidia 2080Ti)
 Prior eye tracking accelerator: CIS-GEP [8]

[8] K. Bong, et. al., JSSC’16

Evaluation Setup and Baselines

 Evaluation Setup
 Benchmark Baselines:

 EdgeCPU (Raspberry Pi) and CPU (AMD EPYC 7742)
 EdgeGPU (Nvidia Jetson TX2) and GPU (Nvidia 2080Ti)
 Eye tracking processor: CIS-GEP [8]

[8] K. Bong, et. al., JSSC’16

Evaluation Setup and Baselines

 Evaluation Setup
 EyeCoD AI Chip and Configurations:

 Silicon prototype:

 Accelerator configurations:

Evaluation: EyeCoD over SOTA Accelerators

 EyeCoD over CPU/GPU platforms:
 EyeCoD achieves up to 2966x, 12.7x, 14.8x, and 2.61x throughput

improvements over EdgeCPU, CPU, EdgeGPU, and GPU

 EyeCoD over SOTA eye tracking accelerators:
 EyeCoD achieves on average 12.8x throughput improvement and 8.1x

higher energy efficiency over CIS-GEP, respectively.

Evaluation of EyeCoD Algorithm Pipeline

 ROI prediction based on eye segmentation model
 EyeCoD achieves up to 16x FLOPs reduction over the SOTA RITNet with

a comparable (~93%) mIOU on FlatCam captured images

 Validate the effectiveness of EyeCoD’s ROI prediction

Evaluation of EyeCoD Algorithm Pipeline

 Gaze estimation on top of the predicted ROIs
 EyeCod with FBNet-C100 (8-bit) achieves 0.04 error reduction while

reducing 78.2% FLOPs, compared with the award winner using ResNet18

 Validate the effectiveness of EyeCoD algorithm pipeline

Evaluation of Our EyeCoD Accelerator

 Overall throughput or energy efficiency improvements:
 EyeCoD achieves 4x over lens-based eye tracking system

 Breakdown analysis:
 P.F. leads to 1.99x improvements, Input., Partial., and Depth. further

offers 1.22x, 1.28x, and 1.29x improvements, respectively.

 * : Using time-multiplexing mode
 P.F. : EyeCoD w/ predict-then-focus pipeline
 Input. : Sequential-write-parallel-read input activation buffer design
 Partial. : Partial time-multiplexing workload orchestration
 Depth. : Intra-channel reuse for depth-wise layers

Summary

EyeCoD integrates system-, algorithm-, and accelerator-level
innovations:

 The first FlatCam based algorithm & accelerator co-design
framework for eye tracking that can simultaneously
meet all three requirements for next-generation AR/VR devices

 On the algorithm level, EyeCoD integrates a predict-then-focus
pipeline to largely reduce the computational cost without
compromising the task accuracy;

 On the hardware level, EyeCoD further develops a dedicated
accelerator attached to FlatCams for accelerating both
computations and data movements.

Acknowledge: NSF RTML & EPCN programs

Demonstration

ShiftAddNAS: Hardware-Inspired Search
for More Accurate and Efficient Neural Networks

Haoran You, Baopu Li, Huihong Shi, Yonggan Fu, Yingyan Lin

ICML 2022

NASA: Neural Architecture Search and Acceleration
for Hardware Inspired Hybrid Networks

Huihong Shi, Haoran You, Yang Zhao, Zhongfeng Wang, Yingyan Lin

ICCAD 2022

ShiftAddNAS: Background and Motivation
 Two branches of SOTA DNN design: Trade off accuracy and efficiency
 Multiplication-based DNNs, e.g., CNNs, Transformers

 Achieve unprecedented task accuracy
 Power hungry  Challenge their deployment to edge devices

Ac
cu

ra
cy

Efficiency

ShiftAddNAS: Background and Motivation
 Two branches of SOTA DNN design: Trade off accuracy and efficiency
 Multiplication-based DNNs, e.g., CNNs, Transformers

 Achieve unprecedented task accuracy
 Power hungry  Challenge their deployment to edge devices

 Multiplication-free DNNs, e.g., ShiftNet, AdderNet, ShiftAddNet
 Efficient and favor their deployment to edge devices
 Under-perform their multiplication-based counterparts in terms of task accuracy

Ac
cu

ra
cy

Efficiency

ShiftAddNAS: Background and Motivation

 Motivation of ShiftAddNAS
 Enable automated search for hybrid network architecture to marry the best of both worlds

 Multiplication-based operators (e.g., Conv & Attention)  High accuracy
 Multiplication-free operators (e.g., Shift & Add)  High efficiency

Ac
cu

ra
cy

Efficiency

Ac
cu

ra
cy

Efficiency

Powerful DNNs

Efficient DNNs
Our goal

ShiftAddNAS: Tackled Challenges

 Motivation of ShiftAddNAS
 Enable automated search for hybrid network architecture to marry the best of both worlds

 Multiplication-based operators (e.g., Conv & Attention)  High accuracy
 Multiplication-free operators (e.g., Shift & Add)  High efficiency

 Associated Challenges
 How to construct an effective hybrid search space?
 More operators  larger SuperNets, but SOTA weight sharing strategy is not applicable

ShiftAddNAS: Our Contributions

For the first time, we

 Develop ShiftAddNAS, featuring a hybrid search space that incorporates both
multiplication-based and multiplication-free operators

 Propose a new heterogeneous weight sharing strategy that enables automated search
for hybrid operators with heterogeneous weight distributions

 Conduct extensive experiments on both CV and NLP tasks to validate the effectiveness
of our proposed ShiftAddNAS framework

Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Seven different blocks

 Attn, Conv, Shift, and Add
 Attn+Conv, Attn+Add, and Attn+Shift

 Elastic dimensions for MLPs, embeddings, and heads

Encoder block types [Attn, Attn+Conv, Attn+Shift]
[Attn+Add, Conv, Shift, Add]

Decoder block types [Attn, Attn+Conv]
[Attn+Shift, Attn+Add]

Num. of decoder blocks [6, 5, 4, 3, 2, 1]
Elastic embed. Dim. [1024, 768, 512]
Elastic head number [16, 8, 4]
Elastic MLP dim. [4096, 3072, 2048, 1024]
Arbitrary Attn [3, 2, 1]

The Search Space for NLP Tasks

Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Seven different blocks

 Attn, Conv, Shift, and Add
 Attn+Conv, Attn+Add, and Attn+Shift

 Elastic dimensions for MLPs, embeddings, and heads

Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Search space for CV tasks

 Multi-resolution
 Various spatial resolutions or scales are essential for CV tasks

Block types [Attn, Conv, Shift, Add]
Num. of 562 × 128 blocks [1, 2, 3, 4]
Num. of 282 × 256 blocks [1, 2, 3, 4]
Num. of 142 × 512 blocks [3, 4, 5, 6, 7]
Num. of 72 × 1024 blocks [4, 5, 6, 7, 8, 9]

The Search Space for CV Tasks

Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Search space for CV tasks

 Multi-resolution
 Various spatial resolutions or scales are essential for CV tasks

Contribution 2: Heterogenous Weight Sharing Strategy

 One-shot NAS with heterogeneous weight sharing
 Weight sharing among Conv, Add, and Shift blocks

NASA: Dedicated Accelerator for Hybrid Networks

 Micro-architecture
 Multi-chunk design with customized PEs  Support heterogeneous layers
 Four-level memory hierarchy  Enhance data locality

Micro-Architecture

NASA:PE Allocation Strategy

 Challenge 1
 How to partition and then allocate limited hardware resources to multiple chunks?

 Proposed PE allocation strategy
 Balance the throughput of multiple chunks Minimize the overall latency
 Formally, allocated PEs in chunks are proportional to the corresponding operations under the

area budget

𝑁𝑁𝐶𝐶
𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

=
𝑁𝑁𝑆𝑆

𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
=

𝑁𝑁𝐴𝐴
𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

,

𝑠𝑠. 𝑡𝑡.𝐴𝐴𝐶𝐶 + 𝐴𝐴𝑆𝑆 + 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.

NASA: Auto-Mapper

 Challenge 2
 Our bigger design space  Nontrivial to manually identify the optimal dataflow

 Proposed Auto-Mapper
 Enable automated search for the optimal dataflow
 Nested for-loop description:
 Loop ordering factors: Determine the data reuse patterns
 Loop tiling factors: Determine how to store data within each memory hierarchy

ShiftAddNAS: Experimental Setting

 NLP tasks
 Two datasets

 WMT’14 English to French (En-Fr)
 WMT’14 English to German (En-De)

 Five evaluation metrics
 BLEU score
 Number of parameters/FLOPs
 Hardware energy and latency

 Four baselines
 Transformer
 Lightweight Conv
 Lite Transformer
 HAT

 CV tasks
 One dataset: ImageNet

 Five evaluation metrics
 Accuracy
 Number of parameters/MACs
 Hardware energy and latency

 Four categories of baselines
 Multiplication-free NNs

 AdderNet, DeepShift, BNN

 CNNs
 ResNet, SENet

 Transformer
 ViT, DeiT, VITAS, Autoformer

 CNN-Transformer
 BoT, HR-NAS, BossNAS

ShiftAddNAS: Experimental Results for NLP Tasks

 Overall Improvement on NLP
 ShiftAddNAS achieves up to +2

BLEU scores improvement and
69.1% and 69.2% energy and
latency savings

ShiftAddNAS: Experimental Results for CV Tasks

 Overall Improvement on CV
 ShiftAddNAS on average

offers a +0.8% ~ +7.7% higher
accuracy and 24% ~ 93%
energy savings

Summary

For the first time, we

 Develop ShiftAddNAS, featuring a hybrid search space that incorporates both
multiplication-based and multiplication-free operators

 Propose a new heterogeneous weight sharing strategy that enables automated
search for hybrid operators with heterogeneous weight distributions

 Conduct extensive experiments on both CV and NLP tasks to validate the
effectiveness of our proposed ShiftAddNAS framework

Open-source Code:
https://github.com/RICE-EIC/ShiftAddNAS

Q & A

Thank you for your listening!

	Towards Ubiquitous Edge Intelligence: Efficient ML Algorithm and Hardware Co-Design
	Research Project Summary
	Research Project Summary
	Research Project Summary
	Table of Content
	ViTCoD: Vision Transformer Acceleration via Dedicated Algorithm and Accelerator Co-Design
	Background of Vision Transformer (ViTs)
	Background of Vision Transformer (ViTs)
	Background of Vision Transformer (ViTs)
	What are the Bottlenecks in ViTs?
	What are the Bottlenecks in ViTs?
	What are the Bottlenecks in ViTs?
	What are the Bottlenecks in ViTs?
	Can Previous Attention Accelerators Help?
	Attention in ViTs and NLP Transformers
	Attention in ViTs and NLP Transformers
	Challenges and Unexplored Opportunities for ViTs?
	Challenges and Unexplored Opportunities for ViTs?
	Challenges and Unexplored Opportunities for ViTs?
	Challenges and Unexplored Opportunities for ViTs?
	Challenges and Unexplored Opportunities for ViTs?
	Proposed ViTCoD: Algorithm & Accel. Co-Design
	Our Overall Contributions in ViTCoD
	ViTCoD Overview
	ViTCoD Overview
	ViTCoD Overview
	ViTCoD Overview
	ViTCoD Overview
	ViTCoD Algorithm: Split and Conquer
	ViTCoD Algorithm: Split and Conquer
	ViTCoD Algorithm: Auto-Encoder
	ViTCoD Algorithm: Auto-Encoder
	ViTCoD Algorithm: Training Pipeline
	ViTCoD Accelerator: Opportunities
	ViTCoD Accelerator: Opportunities
	ViTCoD Accelerator: Design Explorations
	ViTCoD Accelerator: Design Explorations
	ViTCoD Accelerator: Design Explorations
	ViTCoD Accelerator: Micro-Architecture
	ViTCoD Accelerator: Micro-Architecture
	ViTCoD Accelerator: Micro-Architecture
	ViTCoD Accelerator: Micro-Architecture
	ViTCoD Accelerator: Micro-Architecture
	ViTCoD Accelerator: Micro-Architecture
	Evaluation Setup and Baselines
	Evaluation Setup and Baselines
	Evaluation Setup and Baselines
	Evaluation: ViTCoD over SOTA Accelerators
	Evaluation of ViTCoD Algorithm
	Evaluation of ViTCoD Algorithm
	Evaluation of ViTCoD Accelerators
	Summary
	EyeCoD: Eye Tracking System Acceleration via FlatCam-based Algorithm & Accelerator Co-Design
	Background: Tremendously Growing AR/VR Market
	Background: Eye Tracking in AR/VR
	Background: Eye Tracking in AR/VR
	Background: Eye Tracking in AR/VR
	Motivation: Eye Tracking in AR/VR
	Motivation: Eye Tracking in AR/VR
	Limitations of Existing Solutions
	Unexplored Opportunities for Eye Tracking?
	Unexplored Opportunities for Eye Tracking?
	Proposed EyeCoD: Algorithm & Accel. Co-Design
	Proposed EyeCoD: Algorithm & Accel. Co-Design
	Our Overall Contributions in EyeCoD
	EyeCoD Overview: Eye Tracking System
	Proposed EyeCoD System for Eye Tracking: Overview
	Proposed EyeCoD System for Eye Tracking: Overview
	Proposed EyeCoD System for Eye Tracking: Overview
	Proposed EyeCoD System for Eye Tracking: Overview
	EyeCoD Algorithm: Predict-then-focus Pipeline
	EyeCoD Algorithm: Predict-then-focus Pipeline
	EyeCoD Algorithm: Predict-then-focus Pipeline
	EyeCoD Algorithm: Predict-then-focus Pipeline
	EyeCoD Accelerator
	EyeCoD Accelerator: Design Challenge 1
	EyeCoD Accelerator: Design Challenge 1
	EyeCoD Accelerator: Design Challenge 2
	EyeCoD Accelerator: Design Challenge 2
	EyeCoD Accelerator: Design Challenge 3
	EyeCoD Accelerator: Feature 1
	EyeCoD Accelerator: Feature 1
	EyeCoD Accelerator: Feature 1
	EyeCoD Accelerator: Feature 2
	EyeCoD Accelerator: Feature 3
	EyeCoD Accelerator: Feature 3
	EyeCoD Accelerator: Feature 3
	EyeCoD Accelerator: Feature 3
	EyeCoD Accelerator: Feature 3
	Evaluation Setup and Baselines
	Evaluation Setup and Baselines
	Evaluation Setup and Baselines
	Evaluation: EyeCoD over SOTA Accelerators
	Evaluation of EyeCoD Algorithm Pipeline
	Evaluation of EyeCoD Algorithm Pipeline
	Evaluation of Our EyeCoD Accelerator
	Summary
	Demonstration
	ShiftAddNAS: Hardware-Inspired Search �for More Accurate and Efficient Neural Networks
	ShiftAddNAS: Background and Motivation
	ShiftAddNAS: Background and Motivation
	ShiftAddNAS: Background and Motivation
	ShiftAddNAS: Tackled Challenges
	ShiftAddNAS: Our Contributions
	Contribution 1: Hybrid Search Space and SuperNet
	Contribution 1: Hybrid Search Space and SuperNet
	Contribution 1: Hybrid Search Space and SuperNet
	Contribution 1: Hybrid Search Space and SuperNet
	Contribution 2: Heterogenous Weight Sharing Strategy
	NASA: Dedicated Accelerator for Hybrid Networks
	NASA:PE Allocation Strategy
	NASA: Auto-Mapper
	ShiftAddNAS: Experimental Setting
	ShiftAddNAS: Experimental Results for NLP Tasks
	ShiftAddNAS: Experimental Results for CV Tasks
	Summary
	Q & A

