
EDGE-LLM: Enabling Efficient Large Language Model
Adaptation on Edge Devices via Layerwise Unified
Compression and Adaptive Layer Tuning & Voting
Zhongzhi Yu1, Zheng Wang1, Yuhan Li1, Haoran You1, Ruijie Gao1, Xiaoya Zhou3, Sreenidhi Reedy Bommu1, Yang (Katie) Zhao2,

Yingyan (Celine) Lin1
1Georgia Institute of Technology, 2University of Minnesota, Twin Cities, 3University of California, Santa Barbara

{zyu401, zwang3478, yli3326, hyou37, eiclab.gatech, sbommu3, celine.lin}@gatech.edu,
yangzhao@umn.edu, xiaoyazhou@umail.ucsb.edu

Abstract
Efficient adaption of large language models (LLMs) on edge
devices is essential for applications requiring continuous
and privacy-preserving adaptation and inference. However,
existing tuning techniques fall short because of the high
computation and memory overheads. To this end, we intro-
duce a computation- and memory-efficient LLM tuning
framework, called Edge-LLM, to facilitate affordable and
effective LLM adaptation on edge devices. Specifically, Edge-
LLM features three core components: (1) a layer-wise uni-
fied compression (LUC) technique to reduce the computa-
tion overhead by generating layer-wise pruning sparsity
and quantization bit-width policies, (2) an adaptive layer
tuning and voting scheme to reduce the memory overhead
by reducing the backpropagation depth, and (3) a comple-
mentary hardware scheduling strategy to handle the irreg-
ular computation patterns introduced by LUC and adap-
tive layer tuning, thereby achieving efficient computation
and data movements. Extensive experiments demonstrate
that Edge-LLM achieves a 2.92× speed up and a 4× memory
overhead reduction as compared to vanilla tuning methods
with a comparable task accuracy. Our code is available at
https://github.com/GATECH-EIC/Edge-LLM

ACM Reference Format:
Zhongzhi Yu1, Zheng Wang1, Yuhan Li1, Haoran You1, Ruijie Gao1,
Xiaoya Zhou3, Sreenidhi Reedy Bommu1, Yang (Katie) Zhao2, Yingyan
(Celine) Lin1. 2024. EDGE-LLM: Enabling Efficient Large Language
Model Adaptation on Edge Devices via Layerwise Unified Com-
pression and Adaptive Layer Tuning & Voting. In 61st ACM/IEEE
Design Automation Conference (DAC ’24), June 23–27, 2024, San
Francisco, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3649329.3658473

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
DAC’24, June 23–27, 2024, San Francisco, CA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06
https://doi.org/10.1145/3649329.3658473

1 Introduction
In recent days, large language models (LLMs), such as GPT-
4 [1], have shown dominating performance across various
applications that revolutionize human life. Following this
trend, there is an increasing demand to develop efficient
tuning techniques for LLMs to enable them on applications
that require continuous and privacy-preserving adaptation.
However, the massive model size of LLMs hinders directly
achieving the LLM adaptation on edge devices (e.g., on edge
GPUs and smartphones). The challenges are twofold: (1) the
excessive computation overhead encountered when calcu-
lating the forward and backward passes of LLMs [2], and (2)
the cumbersome memory overhead introduced for storing
massive model weights and activations through the tuning
process. As shown in recent works [2, 11], LLMs are typically
tuned on cutting-edge GPUs (e.g., with 40GB or 80GB GPU
memory), taking more than a GPU day to complete. Even for
the state-of-the-art (SOTA) efficient tuning method, effec-
tively tuning relatively small-scale LLMs (e.g., LLaMA-7B)
on edge devices remains impractical [2].

Although several existing efforts aim to address the afore-
mentioned challenges, each has its own drawbacks. (1) To
reduce computation overhead, compressing target LLMs first
to reduce the model size is a common approach [2, 3]. How-
ever, how to effectively reduce the redundancy of LLMs
while maintaining their adaptability is still largely un-
explored [2]. (2) To mitigate memory overhead, existing
methods primarily focus on shortening the backpropagation
depth [19, 23]. Unfortunately, the reduced backpropagation
depth results in only a fraction of blocks in LLMs being
updated, limiting the achievable performance.
In this paper, we develop a comprehensive solution to

tackle the two aforementioned memory and computation
challenges, achieving an effective LLM adaptation. Specifi-
cally, we make the following contributions.

• Wepropose a comprehensive framework, dubbed Edge-
LLM, that tackles the memory and computation chal-
lenges of the LLM adaptation from both algorithm
and hardware perspectives, enabling the effective LLM
adaptation on edge devices with limited memory and
computation resources.

https://github.com/GATECH-EIC/Edge-LLM
https://doi.org/10.1145/3649329.3658473
https://doi.org/10.1145/3649329.3658473
https://doi.org/10.1145/3649329.3658473

DAC’24, June 23–27, 2024, San Francisco, CA Zhongzhi Yu, et al.

• On the algorithm side, we accomplish this goal from
two directions, each primarily focusing on one of the
aforementioned challenges: (1) To reduce the compu-
tation overhead, we propose a low-cost layer-wise
unified compression (LUC) method based on our em-
pirical observation on LLMs’ layer-wise sensitivities to
quantization and pruning. (2) To reduce the memory
overhead, we introduce an adaptive layer tuning and
voting scheme. In adaptive layer tuning, we propose
to selectively update distinct segments of the target
LLM and reduce the memory footprint by directly con-
necting the output of the current updating segment
to the final layer. Further, in adaptive layer voting, we
harness the outputs of different segments of the target
LLM by voting for an optimized output.

• On the hardware side, to better handle the irregular
computation patterns (i.e., diverse layer-wise quantiza-
tion bit-width, layer-wise pruning sparsity, and LLM
segments to update) introduced by the proposed algo-
rithms, we further integrate a complementary hard-
ware scheduling module into Edge-LLM. The hard-
ware scheduling module includes a search space and a
search strategy considering potential offloading strate-
gies, computation schedules, and tensor placements,
aiming to better convert the theoretical reduction in
computation overhead to the hardware efficiency im-
provement.

• Experiment results and ablation studies validate the
effectiveness of our proposed Edge-LLM framework.
Specifically, Edge-LLM achieves a 0.70%∼1.29% higher
MMLU score compared with the baseline methods
tuned under the same resource constraints and a com-
parable perplexity on WikiText-2 as LoRA tuning with
a 2.92× lower latency and a 4× reduction in memory
overhead during each iteration.

2 Background and Motivation
2.1 Efficient Tuning Techniques
Parameter-efficient tuning (PET) comprises techniques
for tuning LLMs to new tasks using a limited number of
trainable parameters, typically less than 10% of the total pa-
rameters in the target LLMs [5, 6, 10, 19]. It offers two major
advantages: (1) reduced storage overhead, facilitating scal-
able multitask deployment, and (2) a marginal reduction in
computation and memory overhead, thanks to the reduced
number of trainable parameters [10]. Despite PET’s wide-
spread use, directly applying it for on-device LLM adaptation
remains impractical due to the remaining memory overhead
is still significant. This is because PET typically inserts a
learnable adapter to most, if not all, layers of the target LLM,
leading to significant memory overhead to store intermediate
activations during tuning.
Memory-efficient tuning (MET) aims to minimize the

memory footprint during the tuning process by reducing

Figure 1. Profiling results on the memory footprint when
tuning LLaMA-7B with LoRA [10] and QLoRA [2] on the
Alpaca [20] dataset.
backpropagation depth, thereby decreasing the number of
activations required to be stored in memory [19, 23]. Existing
MET techniques achieve this goal either using partial tuning
to only tune the final few layers [23] or leveraging side tun-
ing to add a bypass connection between each adapter module
with the final output [19]. While the reduction of memory
footprint during tuning is highly desirable, existing MET
techniques still face an unsatisfactory trade-off between ac-
curacy and memory footprint in LLM tuning. Specifically,
for partial tuning, existing attempts on LLMs need to tune
more than 80% of layers of the target LLM to achieve a sat-
isfactory task accuracy [23], while side tuning suffers from
biased optimization and struggles to achieve task accuracy
comparable to SOTA PET techniques [19].
Compressing-then-tuning is a series of emerging effi-

cient tuning techniques motivated by the observation that
the computation overhead in LLM tuning is dominated by
the forward and backward passes of the LLM’s backbone, due
to the excessive size of the LLM’s backbone [2]. Thus, some
pioneering works propose to compress the LLM backbone
before tuning to reduce the computation and data move-
ment overheads [2]. However, existing SOTA compressing-
then-tuning techniques primarily aim to improve tuning
speed, neglecting the extreme memory overhead (e.g., the
SOTA compressing-then-tuning method still needs an A100
GPU with 40GB memory to achieve effective tuning on the
Llama-70B model [2]). This oversight limits the effectiveness
of compressing-then-tuning techniques in tuning LLMs on
resource-constraint edge devices.
2.2 Memory Overhead During Tuning
To better understand the gap between the memory needed
in existing tuning techniques and the memory available on
edge devices, we profile thememory requirements to tune a
Llama-7B model [23] with LoRA [10], one of the SOTA PET
techniques, and QLoRA [2], one of the SOTA compressing-
then-tuning techniques, respectively. As shown in Fig. 1,
the memory overhead of LoRA is dominated by storing the
LLM’s backbone weights and the activations for backprop-
agation. Even after QLoRA compressed the LLM backbone
to 4-bit and reduced the overall memory footprint by 41.2%
over LoRA, there remains a 1.48× ∼ 2.22× gap between the

Edge-LLM DAC’24, June 23–27, 2024, San Francisco, CA

memory required for tuning and the memory available on
commonly used edge devices (e.g., 8 GB for TX2 [14] and 12
GB for Quest Pro [13]).
2.3 Opportunities for Efficient LLM Tuning
To tackle the aforementioned limitations of existing tuning
methods, we identify potential opportunities to improve
these methods to develop effective LLM tuning frameworks.
On one hand, to further reduce the computation over-

head, we identify amismatch between the previously success-
ful practice aimed at reducing the model redundancy and the
vanilla compression technique used in existing compressing-
then-tuning techniques. Specifically, previous efforts (e.g., [4]
observe that deep learning models exhibit redundancy across
different dimensions (e.g., bit-width and sparsity) and at dif-
ferent layers. In contrast, existing compressing-then-tuning
techniques often adopt a uniform compression approach,
reducing redundancy from only one dimension [2].
On the other hand, to further reduce thememory over-

head, based on our analysis in Sec. 2.1, we summarize that
the key to improving the achievable accuracy-memory trade-
off lies in the ability to update all layers in the LLM with
a limited backpropagation depth. Inspired by the early exit
mechanism developed for efficient model inference [21], we
hypothesize that the outputs from early layers in the LLM
can provide meaningful information for prediction. Thus,
it is possible to start backpropagation from an early exit
layer and still effectively update the model. In this scenario,
since backpropagation can be initiated from various early
exit layers, the backpropagation depth required for updating
all layers in the LLM can be minimized.

3 Edge-LLM Algorithm
3.1 Overview
Motivated by the opportunities identified in Sec. 2.3, we then
introduce the algorithm design of our proposed Edge-LLM
framework to facilitate effective and efficient LLM adaptation
with limited computation and memory overhead. As shown
in Fig. 2, our proposed Edge-LLM tuning algorithm integrates
two key enablers each leveraging one of the aforementioned
opportunities in reducing the computation andmemory over-
head. Specifically: (1) To reduce the computation overhead,
we propose the LUC technique to diminish the redundancy
of the target LLM. This technique is motivated by our em-
pirical observation of the diverse layer-wise sensitivities of
LLMs to quantization and pruning. Based on the observa-
tion above, we develop a low-cost, mean-square-error-based
(MSE-based) identifier in LUC to generate a layer-wise com-
pression policy (e.g., layer-wise bit-width and pruning spar-
sity allocation), aiming to improve the accuracy-efficiency
trade-off of LUC over existing compression techniques in
compressing-then-tuning frameworks (Sec. 3.2). (2) To re-
duce thememory overhead, we propose an adaptive layer
tuning scheme that dynamically connects the output of a

1

(a) Compressing-
Then-Tuning (b) Edge-LLM Tuning

Any Input

Any Output

Input 1 Input 2

Output 1 Output 2

X

Frozen Weight

Updated Weight Forward PassesRemoved
Weight Backward Passes

Any Input

(c) Edge-LLM Inference

Bit-Width Dim.

Sparsity Dim.
Vote Voting

Scheme

Any Input

Vote

Figure 2. Comparison between (a) the compressing-then-
tuning baseline and (b/c) our proposed Edge-LLM method.

selected layer (potentially different in each iteration) to the
final classification layer with a skip connection during the
forward pass. During backpropagation, only a few preceding
layers of the selected layer receive gradient updates. Because
the layers selected for updates vary with different inputs, this
approach ensures that all layers are effectively updated while
minimizing memory overhead. This efficiency is achieved
through the reduced depth of backpropagation enabled by
the introduction of skip connections. Furthermore, during
inference, we introduce a voting mechanism to enhance the
accuracy of LLMs tuned with adaptive layer tuning. This
method capitalizes on the ability of adaptively tuned LLMs
to produce reasonable outputs from multiple layers. Conse-
quently, each layer generates logits, and a voting process is
employed to determine the final output (see Sec. 3.3).
3.2 Layer-wise Unified Compression (LUC)
Motivating observation on LLM’s layer-wise sensitivity.
In prior studies on model compression, a common under-
standing is that different layers in a model exhibit different
sensitivities to different compression techniques [4]. How-
ever, the sensitivities of different layers in LLMs to different
compression techniques remain an open question. To address
this question, we first explore the layer-wise sensitivities of
the target LLM to pruning and quantization. Specifically, we
apply different quantization bit-widths and pruning sparsi-
ties to each layer of a pretrained LLaMA-7B [22] model. By
comparing the averaged MSE of the compressed and original
layer outputs in the target LLM fed with the same input
from the WikiText dataset [12], we observe that, as shown
in Fig. 3, only a small fraction of layers in the LLM have high
sensitivities to compression.
Our hypothesis and the proposed LUC. Based on the

observation above, we hypothesize that the high sensitivity
(i.e., high MSE) is due to limited redundancy in the corre-
sponding layer, thereby necessitating a lower compression

DAC’24, June 23–27, 2024, San Francisco, CA Zhongzhi Yu, et al.

Figure 3. Visualization of LLaMA-7B’s layer-wise sensitivity
to (a) quantization and (b) pruning.
ratio. To this end, we propose the following mapping func-
tions to map the layer-wise MSE to the layer-wise quan-
tization bit-width and pruning sparsity, respectively. For
quantization, given an LLM𝑀 with 𝐿 layers, formulating
L = {𝑙0, 𝑙1, · · · , 𝑙𝐿−1}, a base quantization bit-width 𝐵, and
the quantization sensitivity (i.e., the MSE between the output
of the original layer and the output of the 𝐵-bit quantized
layer) for layer 𝑙𝑖 as 𝑠𝑖𝑞𝑢𝑎𝑛𝑡 , we define the optimized quanti-
zation bit-width 𝑏 𝑗 at layer 𝑙 𝑗 as

𝑏 𝑗 = 𝐵 + 1(𝑠 𝑗𝑞𝑢𝑎𝑛𝑡 ≥
∑𝐿−1

𝑖=0 𝑠𝑖𝑞𝑢𝑎𝑛𝑡

𝐿
), (1)

where 1(.) is the indicator function. For pruning, given
a target overall pruning sparsity 𝑃 , we define the pruning
sparsity 𝑝 𝑗 at layer 𝑙 𝑗 as

𝑝 𝑗 = 𝑃 × 𝐿 ×
𝑠
𝑗
𝑝𝑟𝑢𝑛𝑒∑𝐿−1

𝑖=1 𝑠𝑖𝑝𝑟𝑢𝑛𝑒
, (2)

where 𝑠 𝑗𝑝𝑟𝑢𝑛𝑒 is the pruning sensitivity for layer 𝑙 𝑗 .
3.3 Adaptive Layer Tuning and Voting
In this enabler, our objective is to facilitate effective tun-
ing with reduced memory overhead, thereby fitting the tun-
ing process into edge devices with limited memory capac-
ity. To achieve this, the primary challenge we’ve identified
is enabling efficient updates across all layers of the target
LLM with restricted backpropagation depth, as analyzed in
Sec. 2.3.

In Edge-LLM, we alleviate this challenge by constructing a
set of exit layers T = {𝑡0, 𝑡1, · · · , 𝑡𝑇−1}. Each exit layer 𝑡𝑖 con-
nects to the output of layer 𝑙Ceil((𝑖+1)×𝐿/𝑇) in the target LLM,
functioning as the final output layer. Note that 𝑇 represents
the number of selectable exit layers, and 𝐿 denotes the total
number of layers in the target LLMs, ensuring that 𝑇 < 𝐿.
In each tuning iteration, we randomly select 𝑡𝑖 ∈ T as the
only exit layer to use, and update the following set of layers
{𝑙Ceil((𝑖+1)×𝐿/𝑇)−𝑚, 𝑙Ceil((𝑖+1)×𝐿/𝑇)−𝑚+1, · · · , 𝑙Ceil((𝑖+1)×𝐿/𝑇) , 𝑡𝑖 }.
Each layer in this set is equipped with LoRA adapters. Here,
𝑚 = Ceil(𝐿/𝑇) denotes the number of layers that have un-
frozen trainable parameters in this configuration.
Furthermore, with the adaptive layer tuning described

above, the tuned LLM can generate outputs from all layers
𝑡 ∈ T . Although directly using the final output layer 𝑡𝑇−1 can
achieve competitive performance, having multiple available
exit layers provides an opportunity to further enhance the
performance at inference time by adaptively combining the

outputs of different layers. To this end, we propose a voting
mechanism to enhance the performance by making predic-
tions based on the outputs from all exit layers. Specifically,
inspired by existing findings about the relationship between
post-softmax probability and prediction confidence [15], we
determine the final output index by choosing the one with
the highest post-softmax probability across all exit layers.
Specifically, given an output probability matrixM, with each
element m(𝑖, 𝑗) representing the output probability for index
𝑗 from layer 𝑡𝑖 ∈ T . We first find the location of the maxi-
mum value inM with (𝑖𝑚𝑎𝑥 , 𝑗𝑚𝑎𝑥) = argmax𝑖, 𝑗 (m(𝑖, 𝑗)), then
we generate the final output as 𝑜 = 𝑗𝑚𝑎𝑥 .

4 Edge-LLM Hardware Scheduling
Motivation. The aforementioned algorithm designs intro-
duce an irregular computation pattern (i.e., diverse layer-
wise quantization bit-width, layer-wise pruning sparsity,
and layers to update). This complexity makes it challenging
for real devices to fully benefit from the algorithm’s theo-
retical reduction in computation overhead. To address this
challenge, we propose a complementary hardware schedul-
ing module, focusing on efficient scheduling and offloading
strategies tailored for optimizing LLM inference throughput.
The on-chip accelerator SRAM size limitation (512KB∼1MB)
highlights the inability to load all model weights and acti-
vations, necessitating offloading to secondary storage medi-
ums like DRAM (8GB∼16GB) and SSD (128GB∼256GB). Our
hardware acceleration is motivated by the need to establish
a comprehensive cost model, serving as the basis for efficient
memory scheduling or offloading strategies for each early
exit block in the system.
4.1 Overview
In the pursuit of optimizing the scheduling and offloading
strategies for LLM hardware accelerators, our methodol-
ogy allocates bit-widths and pruning sparsities to each layer
based on sensitivity (see Sec. 3.2). Subsequently, we conduct
a nuanced exploration to identify the optimal offloading
strategy for each early exit block. As depicted in Fig. 4 (a)
and (b), these two steps take algorithm hyperparameters as
inputs and yield the final allocation strategy and hardware
schedulings as outputs.
4.2 Searching Objective
We conceptualize the LLM tuning with offloading as a graph
traversal problem following [18]. In Fig. 4 (c), we present
an illustrative computational graph consisting of three di-
mensions of batches, layers, and tokens. In the depicted
graph, each square denotes the computation of a specific
layer. Squares sharing the same color indicate the utilization
of identical layer weights. A valid path is defined as a trajec-
tory that traverses (i.e., computes) all squares, adhering to
the following constraint:

• During LLM forwarding or backpropagation, a square’s
computation depends on the left or right layers in its

Edge-LLM DAC’24, June 23–27, 2024, San Francisco, CA

Figure 4. The overview of our hardware scheduling.

row being completed, respectively.
• To compute a square, all its inputs (weights, activations,
cache) must be loaded onto the on-chip SRAM.

• At any given time, the cumulative size of tensors stored
on an accelerator must not exceed its memory capacity.

The objective is to identify a valid path that minimizes the
overall execution time, encompassing both compute costs
and I/O costs incurred during the movement of tensors.
4.3 Block Search Space
Building upon the aforementioned search objective, we estab-
lish a search space encompassing potential valid strategies.

• Row-by-row. Existing systems often use solely row-
by-row traversal for the activation footprint savings.
However, this strategy does not consider the weight
sharing between adjacent squares among different
bathes, leading to repetitive weight loading I/O costs.

• Mixed column-by-column and row-by-row. Al-
ternatively, to reduce I/O costs related to weights,
an approach involves traversing the graph column-
by-column. This leverages weight sharing among all
squares in a column, allowing DRAM preservation for
reuse, with activations being loaded and unloaded. As
our proposed algorithm techniques can greatly reduce
the activation memory footprint requirement, we in-
clude mixed column-by-column and row-by-row in
search space.

Considerations. Overlapping. Another optimization is
overlapping. This entails concurrently handling a load of
weights for the next layer, the load of activations for the sub-
sequent batch, the storage of activations from the preceding
batch, and the computation of the current batch. The inte-
gration of overlapping into the block schedule is necessary
for delivering the final scheduling.

Tensor Placement. In addition to the computation schedule,
an effective strategy must delineate the placement of tensors
within thememory hierarchy. Three variables, namely𝑤𝑠𝑟𝑎𝑚 ,
𝑤𝑑𝑟𝑎𝑚 , and 𝑤𝑠𝑠𝑑 , define the percentages of weights stored
on the SRAM, DRAM, and SSD, respectively. Similarly, three
variables, 𝑎𝑠𝑟𝑎𝑚 , 𝑎𝑑𝑟𝑎𝑚 , and 𝑎𝑠𝑠𝑑 articulate the percentages
of activations; and three variables, 𝑔𝑠𝑟𝑎𝑚 , 𝑔𝑑𝑟𝑎𝑚 , and 𝑔𝑠𝑠𝑑
articulate the percentages of gradients.

4.4 Cost Models
Having established the search objective and the search space,
the next step is the development of an analytical cost model.
This model serves the purpose of estimating the execution
time based on the specified algorithm parameters and hard-
ware specifications. The total latency for computing a block
can be estimated as 𝑇dec. Assuming perfect overlapping, 𝑇dec
can be estimated as

𝑇dec = max(𝑟to_sram,𝑤to_dram, 𝑟to_dram,𝑤to_ssd,𝑇comp) (3)
where 𝑟to_sram,𝑤to_dram, 𝑟to_dram,𝑤to_ssd, and𝑇comp denote the
latency of read from DRAM to SRAM, write from SRAM to
DRAM, read from SSD to DRAM, write from DRAM to SSD,
and computation, respectively, during LLM tuning.

5 Evaluation
5.1 Evaluation Setup
Datasets: Two commonly used benchmarking dataset in-
cludingMMLU [9] andWikiText [12].Model: LLaMA-7B [22].
Algorithm baselines: The SOTA PET technique, LoRA [10];
the SOTA MET technique, LST [19]; the SOTA compression
techniques, Sparse-GPT [7] and LLM-QAT [11]; and seven
variants of our proposed methods. Hardware baselines:
The SOTA systolic accelerator [17] dedicated for transformer
training. Algorithm implementation:We use LLM-QAT
and Sparse-GPT as the quantization and pruning techniques,
respectively, and tune the model following the settings in [2].
Hardware configuration: The accelerator’s DRAM is set
to 8GB LPDDR4 and on-chip SRAM to be 1MB, in line with
SOTA edge devices [14], with other hardware configurations
following the baseline training accelerator design. Evalua-
tion methodology:We use the SOTA Scale-Sim [16] sim-
ulator to simulate both the baseline accelerator and those
after applying our techniques on the baseline accelerator.
5.2 Algorithm Evaluation
To evaluate the performance of our proposed method, we
first benchmark our proposed method with existing baseline
methods including partial tuning, LST and LoRA tuning on
the commonly used MMLU dataset. As shown in Table 1, our
method consistently achieves a 0.70%∼1.29% higher accuracy
with the same computation efficiency and a 4× reduction
in memory over the baseline methods. To further validate
the key enablers in Edge-LLM, we first evaluate the LUC’s
perplexity separately on the WikiText-2 dataset over two

DAC’24, June 23–27, 2024, San Francisco, CA Zhongzhi Yu, et al.

Table 1. Benchmarking Edge-LLM on the MMLU dataset.
Method Avg. Bit Sparsity Norm. Mem. MMLU
LoRA 8.0 0% 1.00× 33.60

Partial Tuning 5.0 50% 0.25× 30.94
Ours 5.1 50% 0.25× 31.64

LST 4.0 0% 0.29× 29.04
Partial Tuning 4.0 50% 0.25× 28.70

Ours 4.1 50% 0.25× 29.89

Partial Tuning 3.0 50% 0.25× 26.61
Ours 3.1 50% 0.25× 27.68

SOTA compression techniques including SparseGPT and
LLM-QAT, and two variants: (1) Uniform: using the same
quantization bit-width and pruning sparsity across all layers
and (2) Random: Randomly assign our generated layer-wise
pruning sparsities and quantization bits across all layers. As
shown in Table 2, our proposed method achieves a 1.28∼2.49
lower perplexity compared to the Uniform baseline under
similar resource constraints and a 0.50∼1.68 lower perplexity
compared to the Random baseline under the same efficiency,
showing the effectiveness of our proposed LUC.
5.3 Hardware Evaluation
We evaluate the proposed techniques based on the base-
line systolic accelerator designed for transformer training
with proper modifications for supporting the proposed tech-
niques [17]: (1) Since the proposed adaptive layer tuning
can be naturally run on the baseline accelerator, there is
no need to modify the baseline accelerator; and (2) For the
LUC, we make these modifications: we update the baseline
to store the compressed weights on DRAM and SSD. To sim-
plify the design, we do not modify the compute core for
sparsity and use a simple spatial-temporal flexible-precision
MAC unit [8]. We apply our proposed hardware scheduling
searching method to find the optimal algorithm-to-hardware
mappings. Scale-Sim simulation results show that the adap-
tive layer tuning can achieve 2.24× speedup; the pruning
and adaptive layer tuning can introduce 2.37× speedup; and
combing LUC (4-bit/5-bit) and the adaptive layer tuning can
give 3.38×/2.92× overall speedup, respectively.

6 Conclusion
In this paper, we introduce an LLM tuning framework, Edge-
LLM, achieving efficient LLM adaptation on edge devices.
Experiments demonstrate that Edge-LLM achieves efficient
adaptation with comparable performance as vanilla tuning
with a 2.92× speed up and a 4× memory reduction.

Acknowledgement
This work was supported in part by CoCoSys, one of the
seven centers in JUMP 2.0, a Semiconductor Research Corpo-
ration (SRC) program sponsored by DARPA, and the National
Science Foundation (NSF) through the NSF CAREER funding
(Award number: 2048183).

Table 2. Ablation on LUC’s performance with its variants
Method Avg. Bit Sparsity Perplexity

SparseGPT 8.0 50% 15.88
LLM-QAT 8.0 0% 13.34
Uniform 5.0 50% 17.61
Random 5.1 50% 16.21
Ours 5.1 50% 15.71

Uniform 4.0 50% 19.86
Random 4.1 50% 19.81
Ours 4.1 50% 18.58

Uniform 3.0 50% 32.52
Random 3.1 50% 31.71
Ours 3.1 50% 30.03

References
[1] Bubeck et al. 2023. Sparks of artificial general intelligence: Early

experiments with gpt-4. arXiv preprint arXiv:2303.12712 (2023).
[2] Dettmers et al. 2023. Qlora: Efficient finetuning of quantized llms.

arXiv (2023).
[3] Kim et al. 2024. Memory-efficient fine-tuning of compressed large

language models via sub-4-bit integer quantization. NeurIPS 36 (2024).
[4] Yu et al. 2022. Unified visual transformer compression. arXiv preprint

arXiv:2203.08243 (2022).
[5] Yu et al. 2023. Hint-aug: Drawing hints from foundation vision trans-

formers towards boosted few-shot parameter-efficient tuning. In CVPR.
11102–11112.

[6] Yu et al. 2023. Master-ASR: achieving multilingual scalability and low-
resource adaptation in ASR with modular learning. In ICML. PMLR,
40475–40487.

[7] Frantar et al. 2023. SparseGPT: Massive Language Models Can Be
Accurately Pruned in One-Shot. (2023).

[8] Fu et al. 2021. Enabling random precision switch for winning both
adversarial robustness and efficiency. In MICRO. 225–237.

[9] Hendrycks et al. 2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300 (2020).

[10] Hu et al. 2021. Lora: Low-rank adaptation of large language models.
arXiv preprint arXiv:2106.09685 (2021).

[11] Liu et al. 2023. LLM-QAT: Data-Free Quantization Aware Training for
Large Language Models. arXiv (2023).

[12] Merity et al. 2016. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843 (2016).

[13] Meta. 2022. Quest Pro. https://www.meta.com/quest/quest-pro/.
[14] NVIDIA. 2020. NVIDIA Jetson TX2. www.nvidia.com/en-us/

autonomous-machines/embedded-systems/jetson-tx2/.
[15] Pearce et al. 2021. Understanding softmax confidence and uncertainty.

arXiv preprint arXiv:2106.04972 (2021).
[16] Samajdar et al. 2023. Systolic CNN AcceLErator Simulator (SCALE

Sim). https://github.com/ARM-software/SCALE-Sim.
[17] Shao et al. 2023. An Efficient Training Accelerator for Transformers

With Hardware-Algorithm Co-Optimization. VLSI (2023).
[18] Sheng et al. 2023. FlexGen: High-Throughput Generative Inference of

Large Language Models with a Single GPU. (2023).
[19] Sung et al. 2022. Lst: Ladder side-tuning for parameter and memory

efficient transfer learning. NeurIPS 35 (2022), 12991–13005.
[20] Taori et al. 2023. Stanford alpaca: An instruction-following llama

model.
[21] Teerapittayanon et al. 2016. Branchynet: Fast inference via early

exiting from deep neural networks. In ICPR.
[22] Touvron et al. 2023. Llama: Open and efficient foundation language

models. arXiv preprint arXiv:2302.13971 (2023).
[23] Zhang et al. 2023. Llama-adapter: Efficient fine-tuning of language

models with zero-init attention. arXiv (2023).

https://www.meta.com/quest/quest-pro/
www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://github.com/ARM-software/SCALE-Sim

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Efficient Tuning Techniques
	2.2 Memory Overhead During Tuning
	2.3 Opportunities for Efficient LLM Tuning

	3 Edge-LLM Algorithm
	3.1 Overview
	3.2 Layer-wise Unified Compression (LUC)
	3.3 Adaptive Layer Tuning and Voting

	4 Edge-LLM Hardware Scheduling
	4.1 Overview
	4.2 Searching Objective
	4.3 Block Search Space
	4.4 Cost Models

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Algorithm Evaluation
	5.3 Hardware Evaluation

	6 Conclusion
	References

